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1 Introduction

Subdivision schemes are fast and robust methods for generating smooth (hyper)-surfaces from
a given set of control points, usually in dimensions two or three. We consider the case, when a
subdivision operator maps a discrete polygonal mesh of data points, locally isomorphic to Zs,
to a finer mesh of data points in the same space, locally isomorphic to M−1Zs, where M ∈ Zs×s
is a matrix all of whose eigenvalues are greater than one in modulus. The matrix M is referred
to as dilation matrix. The vertices of the finer mesh are computed by weighted local averages of
the coarser mesh. The weights are referred to as the mask. A subdivision scheme is an iterated
application of subdivision operators on a polygonal mesh, making the mesh finer and finer and
eventually, maybe, converging to a smooth limit curve or surface.

We give as an Example the very first subdivision scheme, invented by Rham [1947] and
popularized by Chaikin [1974].

Example 1.0.1 (Corner cutting algorithm, [Rham, 1947; Chaikin, 1974]). Consider the polyg-
onal chain defined by the sequence of points (cα)α∈Z, cα ∈ R2, with

. . . , c0 =

[
0
2

]
, c1 =

[
2
0

]
, c2 =

[
4
2

]
, c3 =

[
2
1

]
, . . .

plotted in Figure 1.1 (a). For every point pα ∈ R2, α ∈ Z, we compute two new points c′α, c
′′
α ∈ R2

as a linear combination of the two neighbouring points with weights 1
4 and 3

4 , precisely,

c′α =
3

4
cα +

1

4
cα−1, c′′α =

3

4
cα +

1

4
cα+1, α ∈ Z.

We obtain the sequence
[
. . . c′0 c′′0 c′1 c′′1 . . .

]
plotted in Figure 1.1 (b), which are refined

in the same manner again. In Figure 1.1 we see the generated polygonal chain after one, two
and three subdivision steps.

If we define a = 1
4

[
1 3 3 1

]
∈ `0(Z), then we can express one subdivision step by

c 7→ Sc =
∑
β∈Z

a( · − 2β)c(β), c ∈ `(Z,R2). 4

First subdivision schemes with level independent subdivision weights and uniform underly-
ing mesh, so-called stationary schemes like in Example 1.0.1, appeared in the 1960s and are
related to the wavelet and frame theory and found applications in signal processing and image

Figure 1.1: Sequence of points as generated in Example 1.0.1.
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1 Introduction

compression. Because subdivision proofed to be fast, robust and easy to use, the theory of
subdivision influenced several applied areas of mathematics and engineering and, in return, has
been influenced by applications. Thus, a big variety of subdivision methods were invented. We
give a brief, far from exhaustive, overview of various types of subdivision schemes. For a more
thorough survey about subdivision schemes, surfaces and methods see e.g. [Sabin, 2005; Peters
and Reif, 2008; Cashman, 2012] and the references therein.

• Non-uniform subdivision schemes allow for different weights for the computation of each point
of the sequence. They are mostly needed for the generation of surfaces with meshes of non-
uniform topology, for example surfaces with boundary [Daubechies, Guskov and Sweldens,
1999; Peters and Reif, 2008; Warren and Weimer, 2001].

• Non-stationary subdivision (or level-dependent subdivision) schemes use different subdivision
weights in each step of the iteration. They are used in isogeometric analysis and biological
imaging by exploiting their ability to generate and reproduce exponential polynomials [Dyn
and Levin, 1995; Cohen and Dyn, 1996; Dyn and Levin, 2002; Charina, Conti, Guglielmi and
Protasov, 2016].

• Multiple subdivision schemes generalize non-stationary schemes to some extent by allowing in
each step of the process a different dilation. Multiple subdivision schemes are building blocks
for processing of images with anisotropic directional features and for multigrid methods for
solving anisotropic PDEs, see e.g. [Kutyniok and Sauer, 2009; Sauer, 2012; Cotronei, Ghisi,
Rossini and Sauer, 2015] and [Charina, Donatelli, Romani and Turati, 2017], respectively.

• Hermite subdivision schemes refine not only point positions, but also derivatives or nor-
mals [Merrien, 1992; Jüttler and Schwanecke, 2002].

• Non-linear subdivision schemes use non-linear rules to generate new vertices, which can help
to eliminate artefacts, preserve certain shape properties and allows to generate smooth curves
on manifolds [Wallner and Dyn, 2005; Grohs, 2008].

• Set-valued subdivision schemes refine general subsets of Rn [Dyn and Kels, 2011].

One of the most important properties of curves or surfaces generated by subdivision is their
smoothness. In the case of level independent or dependent subdivision weights (stationary and
non-stationary schemes) this property is well understood and usually characterized either using
the matrix or operator approach, see e.g. [Cavaretta, Dahmen and Micchelli, 1991; Dyn and
Levin, 2002; Charina, Conti and Sauer, 2005] and [Daubechies and Lagarias, 1992a; Colella and
Heil, 1994; Han and Jia, 1998; Chen, Jia and Riemenschneider, 2002; Han, 2002; Cabrelli, Heil
and Molter, 2004; Charina and Protasov, 2017], respectively.

The matrix approach studies the spectral properties of finite or compact sets of square ma-
trices derived from the subdivision masks. The essential ingredients are the so-called transition
matrices whose entries depend on the subdivision weights and whose structure is inherited from
the dilation matrix, i.e. the underlying mesh. The main challenge of adapting the matrix ap-
proach to the case of multiple subdivision, and thus level dependent dilation matrices, is in
combining the properties of weights and dilations into an appropriate structure of the corre-
sponding transition matrices. Recent advances by Guglielmi and Protasov [2013, 2016] in the
exact computation of the joint spectral radius of compact sets of square matrices provide ef-
ficient methods for checking both Hölder and Sobolev regularity of subdivision surfaces using
such transition matrices.

The operator approach studies the contractivity of the corresponding difference subdivision
schemes. The study of the properties of multiple subdivision is at its very beginning. The
convergence analysis of multiple subdivision in terms of the restricted spectral radius is given
in [Sauer, 2012].
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1.1 Main results and overview

1.1 Main results and overview

The aim of this thesis is to adapt the matrix approach to the setting of multiple subdivision and
to develop algorithms for checking the regularity of multiple subdivision schemes.

Chapter 2 studies compact subsets of Rs, which are the fixed points of finite sets of contrac-
tion mappings. These sets, the so-called attractors can be seen as the sets of all (multivariate)
numbers in (multiple) positional number systems. The support of functions generated by sub-
division schemes can be described using such sets, and, subsequently, their structure is crucial
for the construction of the transition matrices in Chapter 3.

Most of the results in this chapter generalize well known statements about attractors from the
stationary case to the multiple case, see Lemmata 2.1.14, 2.1.15, 2.1.16 and Corollaries 2.1.19,
2.1.21.

However, there are some differences between those two cases, pointed out in Examples 2.2.3
and 2.2.4. Furthermore, the Lebesgue measure of the boundary of attractors in the multiple
case remains an open problem, see Example 2.2.5 and Proposition 2.2.6.

For numerical applications we implement the functions (i) checktile which implements an al-
gorithm by Gröchenig and Haas [1994], testing whether an attractor is a tile or not, (ii) tile plot-
ting multiple attractors and (iii) constructdigit which implements an algorithm by Cotronei,
Ghisi, Rossini and Sauer [2015] constructing digit sets.

Chapter 3 develops the theory for the matrix approach for multiple subdivision.
In Section 3.1, we adapt the basic concepts of stationary subdivision to the multiple case.
In Section 3.2 and 3.3 we give the first explicit construction of transition matrices for the mul-

tiple case. Even in the stationary case it was not always possible before to construct transition
matrices for certain dilation matrices. The invariant Omega algorithm 3.2.9 settles this prob-
lem. Our construction yields the smallest possible transition matrices whose index set contains
0 ∈ Zs. Conjecture 3.3.4 stipulates the smallest possible size of transition matrices without the
restriction that 0 is in the index set.

In Section 3.4 we investigate the space of polynomial sequences, which has different properties
in the multiple subdivision setting for general dilations matrices, compared to the stationary
setting, see Example 3.4.19.

The main result in this chapter, Theorem 3.4.17, relates the convergence analysis of multiple
subdivision and the joint spectral radius techniques and allows us to use the efficient methods
by Guglielmi and Protasov [2013], studied in Chapter 4.

For numerical applications we implement the functions (i) blf plotting the basic limit func-
tions of multiple subdivision schemes, (ii) constructOmega constructing the smallest invariant
space invariant under transition operators and (iii) constructV, constructVt constructing se-
quence spaces orthogonal to polynomial sequences.

Chapter 4 discusses the explicit computation of the joint spectral radius of a finite set of
square matrices by using and improving the invariant polytope algorithm by Guglielmi and
Protasov [2013, 2016]. The invariant polytope algorithm is one of the only algorithms which can
compute the exact value of the joint spectral radius.

In Section 4.1 and 4.2, we recall properties about the joint spectral radius and explain the
invariant polytope algorithm.

In Section 4.3, we develop the modified Gripenberg algorithm 4.3.5 which gives very good
lower bounds for the joint spectral radius in a very short time.

In Section 4.4, we propose modifications for the invariant polytope algorithm making it faster,
more robust and easier to use. Furthermore, we give a counter example to a conjecture regarding
the balancing of multiple cyclic trees in Section 4.4.4, propose a better balancing procedure
for multiple cyclic trees in Section 4.4.5 and prove that the intermediate bounds for the JSR

11



1 Introduction

computed by the modified invariant polytope algorithm are correct in all cases. The original
invariant polytope algorithm sometimes returns wrong bounds.

Using the modified invariant polytope algorithm, we compute the regularity of Daubechies
wavelets of high order in Section 4.5.4, refine an observation about the regularity of Daubechies
wavelets from [Guglielmi and Protasov, 2015] in Remark 4.5.11 and compute the exact capacity
of codes with forbidden differences for many new examples in Section 4.5.3.

For numerical applications we implement the functions (i) tjsr computing the joint spectral
radius using the modified invariant polytope algorithm 4.4.1, (ii) findsmp which computes
lower bounds for the joint spectral radius using the modified Gripenberg algorithm 4.3.5 and
(iii) codecapacity which implements an algorithm by Moision, Orlitsky and Siegel [2001],
constructing matrices whose joint spectral radius is related to the capacity of codes which avoid
certain forbidden differences.

In the appendix a comprehensive Glossary and list of Symbols can be found. The source
code of simple implementations of the invariant Omega algorithm 3.2.9 and the modified Gripen-
berg algorithm 4.3.5 are listed in Sections 3.6 and 4.6, respectively. The source code of all men-
tioned programs can be found at tommsch.com/science or comes together with this thesis.

1.2 Definitions and Notation

The following notation is used throughout the thesis.

• We denote by C the complex numbers, by R the real numbers, by R+ the positive real
numbers including zero, by Q the rational numbers, by Z the integers, by N the positive integers
without zero and by N0 the positive integers including zero. By ∅ we denote the empty set. For
z ∈ C, we denote its real part by <(z) and its imaginary part by =(z).

• Given sets A, B, we write A $ B if A is a strict subset of B and A ⊆ B if either A = B or
A $ B. We write A * B if A is not a subset of B. The set difference of A and B is denoted by
A \B = {a ∈ A : a /∈ B}. For a finite set A, we denote the number of elements in A by #A.

Given A,B ⊆ Rs. We denote the Lebesgue measure of A by λ (A), if it exists. We say that A
and B are essentially equal, denoted by A ' B, if they only differ by a set of Lebesgue-measure
zero. We define A±B = {a± b : a ∈ A, b ∈ B} and AB = {ab : a ∈ A, b ∈ B}. For M ∈ Rs×s
we define MA = {Ma : a ∈ A}. For a finite set of matrices A = {Aj ∈ Rs×s : j = 1, . . . , J},
J ∈ N, we denote with An, n ∈ N, all matrix products of length n with matrices from A.

Let X be a topological space and A ⊆ X. We denote by A◦ the interior of A, by cl(A) the
closure of A and by ∂A the boundary of A.

• Let µ = (µ1, . . . , µs) ∈ Ns0. An element of Ns0 is called multi-index and written as a row-
vector within parentheses. Given µ, ν ∈ Ns0 multi-indices, we define the length |µ| = µ1 +· · ·+µs,
the sum and the difference µ±ν = (µ1±ν1, . . . , µs±νs) whenever the right hand side is defined,
a partial ordering ν ≤ µ ⇔ νl ≤ µl for all l ∈ {1, . . . , s} and the factorial µ! = µ1! · · ·µs!. If
ν ≤ µ, then we define the binomial coefficient by(

µ

ν

)
=

µ!

ν!(µ− ν)!
=

s∏
l=1

(
µl
νl

)
=

(
µ1

ν1

)(
µ2

ν2

)
· · ·
(
µs
νs

)
. (1.2.1)

For z ∈ Cs, M ∈ Zs×s, α ∈ Zs, we define the power zα = zα1
1 · · · zαss and the matrix power

zM = (zM1 , . . . , zMs), where Ml denotes the lth column of M .
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1.2 Definitions and Notation

• Let X,Y be sets, X countable. We denote by Y X or `(X,Y ) the set of sequences of elements
in Y indexed by elements in X. If Y = R, then we also write `(X). An element of Y X is denoted
by (yx)x∈X , (yx)x or y.

For a sequence a ∈ `(X,Y ) we denote the value at index x ∈ X with a(x) or ax. The support
of a sequence a ∈ `(X) is defined by supp a = {x ∈ X : a(x) 6= 0}. With `0(X) we denote
finitely supported sequences. With `p(Zs), 1 ≤ p <∞, we denote sequences with finite p-Norm
defined by ||c||pp = ||c||p`p =

∑
α∈Zs ||c(α)||pp, where ||c(α)||p is the p-vector norm of c(α) defined

by ||c(α)||pp =
∑s

l=1 |c(α)l|p. With `∞(Zs) we denote bounded sequences with finite supremum
norm defined by ||c||∞ = ||c||`∞ = supα∈Zs |c(α)|.

The bold number in a sequence or matrix denotes the zeroth entry. We denote with δ ∈ `(Zs)
the Kronecker delta, δ =

[
1
]
, i.e. δ(α) = 1 for α = 0 and zero otherwise.

We identify finite sequences with vectors, matrices and tensors, and thus we settle for the
choice to write sequences in `(Z) as column-vectors. Given A ∈ Rs×s, we denote by AT the
transpose of A, by A∗ the conjugate transpose of A, by ρ(A) the spectral radius of A and by
det(A) the determinant of A, We denote with I the identity matrix and with el the lth standard
unit vector of Rs.

Given countable sets I, J and mi,j ∈ R for i ∈ I, j ∈ J . We say (mi,j)i∈I,j∈J ∈ RI×J is a
generalized I × J matrix [Cabrelli, Heil and Molter, 2004, Section 2.1]. Generalized matrices
may always be realized as ordinary matrices by choosing a specific ordering for the sets I and
J .

All sequences and matrices are written within square-brackets [ · ]. Closed and open intervals
are denoted by [ ] and ( ), respectively.

• For α ∈ (0, 1] we denote by Cα(Rs) the Hölder continuous functions with exponent α, i.e.
f ∈ Cα if there exists C > 0 such that |f(x)− f(y)| ≤ C ||x− y||α for all x, y ∈ Rs.

• We mostly use the letters α, β, γ as indices and the letters f , g, φ, ψ for functions. We
usually denote by c a sequence, by a a finitely supported mask sequence, by M a dilation matrix,
by s the dimension, by l the running index of the dimension, and by i we denote either an index
or the imaginary unit i2 = −1. Index sequences are usually denoted by j, j ∈ {1, . . . , J}N, and
their elements are denoted by j1, j2, etc., i.e. without using bold font.

• The floor function, taking x ∈ R and returning the greatest integer less than or equal to x
is denoted by bxc. The linear span (or linear hull) of a set V is denoted by spanV . The inner
product of x, y ∈ Rs is denoted by (x, y).

We abbreviate JSR for joint spectral radius, RSR for restricted spectral radius and LP for
linear programming. The shorthand notation j = 1, . . . , J is used to denote j ∈ {1, . . . , J}. For
a, b ∈ R we write a ' b if the values of a and b are approximately equal. The symbol closes
proofs, the symbol 4 closes examples.

Having established ourselves on this sound basis, it is our duty to see what inferences
can be drawn [Doyle, 1893].
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2 Attractors and tiles

In this chapter we study the basic ingredient for the matrix approach to subdivision schemes;
compact subsets of Rs, s ∈ N, which are the fixed points of a set of contractive mappings. Given
a bounded sequence of jointly expanding dilation matrices Mj and a bounded sequence of finite
subsets Qj ⊆ Zs, we investigate the corresponding attractor, i.e. the set of numbers which can be
represented in a positional number system with matrix-bases Mj and digits q ∈ Qj . A common
positional number system is the decimal number system with digits 0 to 9 and base 10, whose
corresponding attractor is the interval [0, 1]. A common multiple positional number system is
used to denote the time with bases 24, 60, 60 and 10, denoting hours, minutes, seconds, and
fractions of seconds, respectively.

The name attractor is borrowed from the stationary case where only one dilation matrix
M ∈ Zs×s and one finite subset Q ⊆ Zs is considered [Barnsley, 1988]. In this setting, the
corresponding attractor is the unique compact set KQ ⊆ Rs which satisfies the fixed point
equation

KQ = M−1(KQ +Q), KQ ⊆ Rs.

2.1 Attractors

The joint spectral radius (JSR) of a finite set of matrices, is a quantity which describes the worst
case growth rate of the norms of products of matrices from this set. It is a generalization of the
standard spectral radius of one matrix.

The notion of the joint spectral radius plays a central role in this work. In the context of
multiple attractors, the topic of Chapter 2, the concept of the joint spectral radius is used to
describe the joint expanding properties of several dilation matrices. In the context of multiple
subdivision, the topic of this Chapter, the concept of the joint spectral radius is used to de-
scribe the joint contracting properties of operators corresponding to the considered subdivision
operators. Finally, in Chapter 4, we discuss the joint spectral radius itself and how to compute
it.

Definition 2.1.1 ([Rota and Strang, 1960]). Let A = {Aj ∈ Rs×s : j = 1, . . . , J} be a finite set
of square matrices. The joint spectral radius (JSR) of A is defined by

JSR(A) = lim
n→∞

max
Aj∈A

||Ajn · · ·Aj1 ||
1/n .

The limit in Definition 2.1.1 exists, is independent of the matrix norm and can be expressed
as the infimum over all possible norms [Rota and Strang, 1960, Proposition 1]. Precisely, if
A = {Aj ∈ Rs×s : j = 1, . . . , J} is a finite set of square matrices, then

JSR(A) = inf
|| · ||

max
Aj∈A

||Aj || . (2.1.1)

Since we will use this statement later on, we provide its proof in Chapter 4, Lemma 4.1.1.
We use the JSR to describe the joint expanding properties of several matrices. A single

matrix is expanding, if all of its eigenvalues are greater than one in modulus or, equivalently, all
eigenvalues of the inverse matrix are less than one in modulus, and thus the spectral radius of
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2 Attractors and tiles

the inverse is less than one. From this observation, the definition of jointly expanding matrices
is straightforward.

Definition 2.1.2. A finite set of invertible matrices {Mj ∈ Zs×s : j = 1, . . . , J} is jointly ex-
panding if

JSR(
{
M−1
j : j = 1, . . . , J

}
) < 1.

A matrix M ∈ Zs×s is a dilation matrix if ρ(M−1) < 1.

We want to study compact sets which are the fixed point of a finite set of affine contractive
mappings. The natural space to work with is the Hausdorff-space H(Rs).

Definition 2.1.3 ([Hausdorff, 1914, page 294]). Let K ⊆ Rs. We define H(K) as the space of
all non-empty, compact subsets of K with the Hausdorff metric h defined by

h(B,C) = max

{
sup
b∈B

inf
c∈C
||b− c||2 , sup

c∈C
inf
b∈B
||b− c||2

}
, B,C ∈ H(K). (2.1.2)

The topology induced by the Hausdorff metric is independent of the norm used in (2.1.2) and
if K ⊆ Rs is compact, then the space H(K) is a complete metric space [Hausdorff, 1914, page
294]. The induced topology is rather coarse, as the next example shows.

Example 2.1.4. Let n ∈ N. If An = 1
nZ ∩ [0, 1], then An → [0, 1] as n → ∞ in the Hausdorff

metric h. Indeed, for n ∈ N it follows that

sup
an∈An

inf
a∈[0,1]

||a− an||2 =0,

sup
a∈[0,1]

inf
an∈An

||a− an||2 =
1

2n
,

and therefore h(An, [0, 1])= 1
2n . Note that, #An <∞, n ∈ N, whereas [0, 1] is uncountable. 4

Definition 2.1.5. Let {Mj ∈ Zs×s : j = 1, . . . , J} be jointly expanding and Qj ⊆ Zs, j ∈
{1, . . . , J}, be finite. We define the (multiple) attractor associated to Qj , j ∈ {1, . . . , J} and

j ∈ {1, . . . , J}N by

KQ, j = clH

(
M−1
j1
Qj1 +M−1

j1
M−1
j2
Qj2 + · · ·

)
= clH

( ∞∑
m=1

( m∏
n=1

M−1
jn

)
Qjm

)
. (2.1.3)

For J = 1, we write KQ, j = KQ and call it stationary attractor.
For x = M−1

j1
q1 +M−1

j1
M−1
j2
q2 + · · · ∈ KQ, j , qn ∈ Qjn , we also write

x = .q1q2 . . . . (2.1.4)

and call it the expansion of x.

In view of (2.1.4), attractors can be seen as the set of points in a positional number system,
with no digits left to the radix point. We present examples for the multiple case later.

Example 2.1.6. Let s = 1, M = 3 and Q = {0, 2}. The corresponding attractor KQ is plotted
in Figure 2.1. It is the Cantor set, discovered by Smith [1874] and discussed by Cantor in 1883,
created by iteratively deleting the open middle third from a set of line segments. This can
be seen using (2.1.4). Indeed, the set KQ consists of exactly those numbers in base 3 whose
expansions do not contain the digit 1; which is exactly the Cantor set. 4
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2.1 Attractors

Figure 2.1: Attractor from Example 2.1.6.

Remark 2.1.7. The function tile [Mejstrik, 2018b] plots multiple attractors and is used to
plot all pictures of attractors in this thesis.

We are mainly interested in attractors associated to two types of sets:

(i) supports of mask sequences, defined in Chapter 3, whose attractors are the supports of
the functions generated by the corresponding convergent subdivision schemes.

(ii) digit sets corresponding to dilation matrices, whose attractors are used to build a cover
for the sets from (i), see Chapter 3.3.

We define digit sets next.

Definition 2.1.8. A digit set D ⊆ Zs corresponding to a dilation matrix M is a complete set
of representatives of the quotient group Zs/MZs = {α+MZs : α ∈ Zs}, i.e. D ' Zs/MZs. The
elements of a digit set are called digits.

Any digit set has as many elements as the modulus of the determinant of its corresponding
dilation matrix. A proof for this well known statement can be found in [Gröchenig and Madych,
1992, Lemma 2].

Lemma 2.1.9. If M is a dilation matrix and D ' Zs/MZs, then #D = |detM |.

Example 2.1.10. (i) For the matrix M = 10 one possible digit set is D = {0, . . . , 9}. The
corresponding attractor is the interval [0, 1].

(ii) Let s = 2, MDD =

[
1 1
−1 1

]
and DDD =

{[
0
0

]
,

[
1
0

]}
. The corresponding attractor KDD =

KDDD
is usually called double dragon and can be seen in Figure 2.2. 4

Figure 2.2: The so-called double dragon KDD from Example 2.1.10 (ii). A really beautiful plot
of this attractor (and others) can be found in [Gilbert, 1981]. Nice plots of three
headed and tame dragons can be found in [Bandt, 1991].
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2 Attractors and tiles

In Lemma 2.1.11 we present two standard choices for digit sets and their straightforward
construction [Cotronei, Ghisi, Rossini and Sauer, 2015].

Lemma 2.1.11. (i) Let M ∈ Zs×s be a dilation matrix. The image of [0, 1)s under M inter-
sected with the integers is a digit set for M , i.e.

M [0, 1)s ∩ Zs ' Zs/MZs. (2.1.5)

It can be computed by

M [0, 1)s ∩ Zs =
{
α−M

⌊
M−1α

⌋
: α ∈ Zs

}
,

where the floor function b · c is defined component-wise.

(ii) Let M1,M2 ∈ Zs×s be jointly expanding. If D1 ⊆ Zs is a digit set for the dilation matrix
M1 and D2 ⊆ Zs is a digit set for the dilation matrix M2, then M2D1 +D2 is a digit set
for the dilation matrix M2M1.

Proof. (i) We start by showing (2.1.5). Note that, since M([0, 1)s +Zs) = Rs ⊇ Zs, it follows
that for all α ∈ Zs, there exists β ∈MZs such that α+ β ∈M [0, 1)s. It remains to show
that all elements of M [0, 1)s ∩Zs are distinct representatives of Zs/MZs. Let α, β ∈MZs
such that α− β ∈ MZs. Thus, α− β ∈

(
(M [0, 1)s ∩ Zs)− (M [0, 1)s ∩ Zs)

)
∩MZs which

implies that α − β ∈ M(−1, 1)s ∩ Zs ∩MZs = M(−1, 1)s ∩MZs = 0. Therefore, (2.1.5)
is proven.

Equation (2.1.6) is straightforward to show after multiplying it with M−1, which gives

[0, 1)s ∩M−1Zs =
{
γ − bγc : γ ∈M−1Zs

}
. (2.1.6)

Since bγc = 0 for γ ∈ [0, 1)s it follows that [0, 1)s ∩M−1Zs ⊆
{
γ − bγc : M−1γ ∈ Zs

}
.

Since the floor function maps (component wise) a number x ∈ R to the greatest integer
less than or equal to x, i.e. bxc ≤ x and x− bxc ∈ [0, 1), the other inclusion follows.

(ii) First note that all elements d ∈M2D1 are representatives of the class 0 ∈ Zs/M2Zs. Thus,
by Lemma 2.1.9, M2D1 +D2 has |detM2 · detM1| elements.

We show next that all elements of M2D1 +D2 are different representatives of elements of
the quotient group Zs/M2M1Zs. Let a1, b1 ∈ D1, a2, b2 ∈ D2 and define a = M2a1 + a2,
b = M2b1 +b2. Assume a and b represent the same class in Zs/M2M1Zs. Thus, there exists
α ∈ Zs such that M2a1 + a2−M2b1− b2 = M2M1α or, equivalently, M2(a1− b1−M1α) =
b2 − a2. Therefore, b2 − a2 ∈ M2Zs from which it follows that a2 = b2, and subsequently,
with the same argument, a1 = b1. Finally, the claim follows by Lemma 2.1.9.

Note that these two constructions can yield different sets.

Example 2.1.12. Let M1 =

[
1 1
1 −1

]
, M2 =

[
1 1
−1 1

]
and define M21 = M2M1. The digit

sets D1, D2 and D
(a)
21 corresponding to M1, M2 and M2M1, respectively, constructed using

Lemma 2.1.11 (i), are D1 = M1[0, 1)s ∩ Zs = {[ 0
0 ] , [ 1

0 ]}, D2 = M2[0, 1)s ∩ Zs = {[ 0
0 ] , [ 1

0 ]} and

D
(a)
21 = M2M1[0, 1)s ∩ Zs =

{[
0
−1

]
, [ 0

0 ] ,
[

1
−1

]
, [ 1

0 ]
}

. However, the digit set D
(b)
21 , constructed

using D1, D2 and Lemma 2.1.11 (ii), is D
(b)
21 = M2D1 +D2 =

{
[ 0

0 ] ,
[

1
−1

]
, [ 1

0 ] ,
[

2
−1

]}
. 4

Remark 2.1.13. The function constructdigit [Mejstrik, 2018b] implements an algorithm
cited in [Cotronei, Ghisi, Rossini and Sauer, 2015, Lemma 1] which constructs, for a given
dilation matrix M , the digit set M [0, 1)s ∩ Zs. Note that there is a typo in that paper; the
authors use integer-truncation instead of the floor-function.
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2.1 Attractors

The following properties of the attractors are reminiscent of the stationary and non-stationary
settings. Lemma 2.1.14 shows that multiple attractors are uniformly bounded, in particular
compact.

Lemma 2.1.14. If {Mj ∈ Zs×s : j = 1, . . . , J} is jointly expanding and Qj ⊆ Zs, j ∈ {1, . . . , J},
finite, then there exists C > 0 such that for all j ∈ {1, . . . , J}N,

||x||2 ≤ C for all x ∈ KQ, j

In particular, KQ, j is compact.

Proof. The boundedness of KQ, j follows, by (2.1.1), due to the existence of a matrix norm || · ||
and constant CM > 0 such that CM = maxj∈{1,...,J}

∣∣∣∣∣∣M−1
j

∣∣∣∣∣∣ < 1, and the fact that the sets

Qj , j ∈ {1, . . . , J}, are finite, i.e. bounded by a constant 0 < CQ < ∞. Indeed, for every
x = .q1q2 . . . ∈ KQ, j , qn ∈ Qjn ,

||x|| =
∣∣∣∣∣∣M−1

j1
q1 +M−1

j1
M−1
j2
q2 + · · ·

∣∣∣∣∣∣ ≤ CQ ∞∑
n=1

CnM =
CQCM
1− CM

.

Note that CM and CQ do not depend on j ∈ {1, . . . , J}N. The attractor KQ, j is closed by
definition, thus compact.

Proposition 2.1.15, a direct generalization of [Gröchenig and Madych, 1992, Lemma 3] to the
multiple case, gives an explicit construction for the attractors KQ, j defined in (2.1.3). It will
become helpful in the forthcoming proofs.

Proposition 2.1.15. Let {Mj ∈ Zs×s : j = 1, . . . , J} be jointly expanding matrices, Qj ⊆ Zs,
j ∈ {1, . . . , J}, be finite and j ∈ {1, . . . , J}N. If K̃0,n ⊆ Rs, n ∈ N, is a sequence of compact,
non-empty and uniformly bounded sets, i.e. there exists C > 0 such that

||x̃0||2 ≤ C, x̃0 ∈ K̃0,n, n ∈ N,

then the sequence of compact sets

K̃n = M−1
j1
Qj1 + · · ·+M−1

j1
· · ·M−1

jn
Qjn +M−1

j1
· · ·M−1

jn
K̃0,n

=
n∑

m=1

(
m∏
k=1

M−1
jk

)
Qjm +

(
n∏
k=1

M−1
jk

)
K̃0,n, n ∈ N.

(2.1.7)

converges to KQ, j with respect to the Hausdorff-metric.

Proof. As in the proof of Lemma 2.1.14, by (2.1.1), there exists a norm || · || and constants

CM , CQ, C0 > 0 such that CM = maxj∈{1,...,J}

∣∣∣∣∣∣M−1
j

∣∣∣∣∣∣ < 1, ||x|| < CQ for all x ∈ KQ, j and

||x̃0|| < C0 for all x̃0 ∈ K̃0,n, n ∈ N. Let x̃n ∈ K̃n. By (2.1.7), it follows that there exist
qm ∈ Qjm , m ∈ {1, . . . , n}, such that x̃n = .q1 . . . qn + yn, where yn ∈ M−1

j1
· · ·M−1

jn
K̃0,n,

||yn|| < C−nM C0. Therefore, defining x = .q1 . . . qnqn+1qn+2 . . . ∈ KQ, j , with arbitrary qm ∈ Qjm ,
m ≥ n+ 1, we get

||x̃n − x|| = ||.q1 . . . qn + y − .q1q2 . . .|| = ||−.0 . . . 0qn+1qn+2 . . .+ yn||
≤ ||.0 . . . 0qn+1qn+2 . . .||+ ||yn|| ≤ C−nM CQ + C−nM C0.

Thus, supx̃n∈K̃n infx∈K ||x− x̃n|| → 0 as n→∞.
For the other estimate needed for (2.1.2), choose x = .q1q2 . . . ∈ KQ, j , define for n ∈ N the

sequences x̃n = .q1 . . . qn + M−1
j1
· · ·M−1

jn
x̃0,n, with some x̃0,n ∈ K̃0,n, and show that x̃n → x as

n→∞.
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2 Attractors and tiles

Corollary 2.1.16 of Proposition 2.1.15 is a direct generalization of [Gröchenig and Madych,
1992, Theorem 2.3]. It shows that integer translates of multiple attractors cover Rs. We will
elaborate on this property in Section 2.2.

Corollary 2.1.16. If {Mj ∈ Zs×s : j = 1, . . . , J} is jointly expanding with corresponding digit

sets Dj ' Zs/MjZs and j ∈ {1, . . . , J}N, then

(i) KD, j + Zs = Rs,

(ii) λ
(
K◦D, j

)
6= 0 and

(iii) λ (KD, j) ≥ 1.

Proof. (i) Let K̃0 = [0, 1]s and define for n ∈ N, K̃n = M−1
j1
Dj1 + · · · + M−1

j1
· · ·M−1

jn
Djn +

M−1
j1
· · ·M−1

jn
K̃0 and Dj[1,n] = Mjn · · ·Mj2Dj1 +Mjn · · ·Mj3Dj2 + · · ·+Djn . First observe that

K̃n + Zs = Rs, n ∈ N, (2.1.8)

since each Dj is a digit set for the dilation matrix Mj , j ∈ {1, . . . , J}. Indeed, K̃n + Zs = Rs
if and only if K̃0 +Dj[1,n] +Mjn · · ·Mj1Zs = Rs and Dj[1,n] is a digit set for the dilation matrix
Mjn · · ·Mj1 by Lemma 2.1.11 (ii). Thus, (2.1.8) holds.

Let x ∈ Rs. We now show that there exists α ∈ Zs and a subsequence (nk)k∈N such that
x+α ∈ Kjnk

for all k ∈ N. By the preliminary observation 2.1.8, there exists a sequence (αn)n∈N

of lattice points αn ∈ Zs such that x+αn ∈ K̃n for all n ∈ N. Since the sets K̃n are bounded, the
sequence (αn)n is bounded. Therefore, there exists a constant subsequence (αnk)k = α, which
implies x + α ∈ K̃nk for all k ∈ N. Since, by Proposition 2.1.15, the sets K̃n converge in the
Hausdorff-metric (2.1.2) to KD, j , it follows that x ∈ KD, j . Otherwise, x ∈ (Rs \ KD, j)◦ due
to the fact that KD, j is closed. Hence we can find a ball Br(x) ⊆ Rs centred at x with radius
r > 0 which has empty intersection with KD, j . This implies x /∈ K̃nk for large k ∈ N which is a
contradiction.

(ii) This follows directly from the Baire category theorem.
(iii) Since the attractors KD, j are bounded, there exists R ∈ R such that ||x||∞ < R for all x ∈

KD, j . Using that the integer shifts of KD, j cover Rs, it follows that [−N+R,N−R]s ⊆ KD, j +
{−N, . . . , N}s for all N ∈ N, N > R. Therefore, (2(N − R))s ≤ λ (KD, j + {−N, . . . , N}s) ≤
(2N)s · λ (KD, j) which implies (N−R)s

(N+1)s ≤ λ (KD, j) for all N ∈ N, N > R.

Example 2.1.17. We consider again the double dragon KDD from Example 2.1.10 (ii), given by

MDD =

[
1 1
−1 1

]
and DDD =

{[
0
0

]
,

[
1
0

]}
. Let K̃0 = [0, 1]2. The first eight approximations K̃n,

n ∈ {0, . . . , 7}, of the attractor KDDD
= KDD, as defined in (2.1.7) with Q = DDD, are plotted in

Figure 2.3. 4

Corollary 2.1.19 of Proposition 2.1.15 allows us to characterize attractors KQ, j as fixed points
of an iterated function system.

Definition 2.1.18. Let j ∈ {1, . . . , J}N. For r ∈ N we define the shifted sequence j[r] by

j[r] = (jr, jr+1, jr+2, · · · ) = (jn+r−1)n∈N. (2.1.9)

Corollary 2.1.19. (i) If {Mj ∈ Zs×s : j = 1, . . . , J} is jointly expanding , Qj ⊆ Zs, j ∈
{1, . . . , J}, finite and j ∈ {1, . . . , J}N, then

KQ, j[r] = M−1
jr

(Qjr +KQ, j[r+1]), r ∈ N. (2.1.10)
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2.1 Attractors

Figure 2.3: The first eight approximations of the double-dragon KDD from Example 2.1.17, start-
ing with the unit cube

(ii) Conversely, if (Kr)r∈N, Kr ⊆ Rs, is a sequence of uniformly bounded, non-empty, compact
subsets of Rs such that Kr = M−1

jr
(Qjr +Kr+1) for all r ∈ N, then

Kr = KQ, j[r] , r ∈ N.

Proof. (i) Since cl(A+B) = cl(A) + cl(B) for A,B ⊆ Rs compact, the claim follows by (2.1.3).
Indeed,

KQ, j[r] = cl(M−1
jr
Qr +M−1

jr
M−1
jr+1

Qjr+1 + . . .)

= cl(M−1
jr
Qr) + cl(M−1

jr
M−1
jr+1

Qjr+1 + . . .)

= M−1
jr
Qr +M−1

jr
cl(M−1

jr+1
Qjr+1 + . . .)

= M−1
jr
Qr +M−1

jr
KQ, j[r+1] .

(ii) Applying Kr = M−1
jr

(Qjr +Kr+1) iteratively we get

Kr = M−1
jr
Qjr + · · ·+M−1

jr
· · ·M−1

jn
Qjn +M−1

j1
· · ·M−1

jn
Kn, r ∈ N, n ∈ N.

The compact sets Kr, r ∈ N are uniformly bounded and non-empty, and thus, by Proposi-
tion 2.1.15, Kr = KQ, j[r] .

Example 2.1.20. Let s = 1, Mj ∈ N, Mj ≥ 2, Dj = {0, . . . , n− 1}, for j ∈ {1, . . . , J}. The

attractor KQ, j[r] is the interval [0, 1] for any j ∈ {1, . . . , J}N, r ∈ N. Indeed, the interval [0, 1]
is a fixed point of the equations

K = M−1
j (K +Dj), j ∈ {1, . . . , J} ,

and thus the claim follows by Corollary 2.1.19 (ii). 4
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2 Attractors and tiles

The following corollary of Proposition 2.1.15 is useful for attractor calculus.

Corollary 2.1.21. If {Mj ∈ Zs×s : j = 1, . . . , J} is jointly expanding, Qj , Q
′
j ⊆ Zs, j ∈ {1, . . . , J},

are finite and j ∈ {1, . . . , J}N, then

KQ, j +KQ′, j = KQ+Q′, j ,

where (Q+Q′)j = Qj +Q′j.

Proof. For any r ∈ N, by Corollary 2.1.19, we have

KQ, j[r] +KQ′, j[r] = M−1
jr

(Qjr +KQ, j[r+1]) +M−1
jr

(Q′jr +KQ′, j[r+1])

= M−1
jr

((Qjr +Q′jr) + (KQ, j[r+1] +KQ′, j[r+1])).

Therefore, the sets KQ, j[r] +KQ′, j[r] , r ∈ N, satisfy the assumptions of Corollary 2.1.19 (ii) and
the claim follows.

In particular, Corollary 2.1.21 shows that a shift of the sets Qj only leads to a shift of the
attractors KQ, j . Thus, we could settle for the standard choice that 0 ∈ Qj , although we never
use this property.

Example 2.1.22. If M=2, Q={0, 1}, Q′={1}, then KQ=[0, 1], KQ′={1}, KQ+Q′=[1, 2]. 4

2.2 Tiles

Most of the properties of stationary attractors transfer directly to the multiple case, but not all
of them do. Even more, one desirable property does not even hold in general in the stationary
case; namely that the integer shifts of attractors KD, j corresponding to digits sets are essentially
disjoint. A set with such a property is a tile, see Definition 2.2.1.

The current theory of the matrix approach that investigates properties of (stationary) subdi-
vision schemes assumes that for the corresponding dilation matrix M , there exists a digit set D
such that the attractor KD is a tile. We show in Chapter 3 that this assumption is superfluous,
and thus simplify the matrix approach for both the stationary and multiple case.

Definition 2.2.1. Let K be a measurable subset of Rs. K is a tile if K + Zs ' Rs and
K ∩ (K + α) ' ∅ for all α ∈ Zs \ {0}. We say that K tiles Rs.

Tiles have Lebesgue measure one. Given K ⊆ Rs, measurable, such that K + Zs ' Rs, then
K∩ (K+α) ' ∅ for all α ∈ Zs \{0} if and only if λ (K) = 1. A proof for this standard argument
can be found in [Gröchenig and Madych, 1992, Lemma 1].

Example 2.2.2. Tiles we have encountered so far are the interval [0, 1] from Example 2.1.20
and the double dragon KDD from Example 2.1.10 (ii). 4

The problem of the existence of pairs (M,D) of a dilation matrix M and corresponding digit
set D, whose attractor KD is a tile is partly solved in the stationary case. Lagarias and Wang
[1995, 1996a, 1997] proved, if s = 1, 2, 3 or |detM | ≥ s, then there always exists a digit set
D such that the attractor KD is a tile. Potiopa [1997] showed that for the stationary case in
dimension s = 4 for the dilation matrix

M =


0 1 0 0
0 0 1 0
0 0 −1 2
−1 0 −1 1


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2.2 Tiles

there exists no digit set, such that the corresponding attractor is a tile. For certain matrix
families explicit digit sets are known such that the corresponding attractor is a tile [Gröchenig
and Haas, 1994].

Furthermore, Gröchenig and Madych [1992] developed an algorithm which decides whether
the attractor corresponding to a pair (M,D) is a tile or not.

For the multiple case, a natural problem arises: Given two jointly expanding dilation matrices
Mj ∈ Zs×s, j ∈ {1, 2}, and the corresponding digit sets Dj , whose stationary attractors KDj are
tiles for Rs. Does it follow that a multiple attractor KD, j corresponding to {(M1, D1), (M2, D2)}
and arbitrary ordering j ∈ {1, 2}N is a tile? The answer is no as Example 2.2.3 shows. Moreover,
two pairs (Mj , Dj), j ∈ {1, 2}, whose corresponding attractors are not tiles, can give rise to a
multiple attractor which is a tile. This is shown in Example 2.2.4.

Example 2.2.3. Let M1 =
[

1 2
−2 −2

]
, D1 =

{[
0
0

]
,
[

1
−1

]}
, M2 =

[−1 1
−1 −2

]
and D2 = {

[
0
−2

]
,[

0
−1

]
,
[

0
0

]
}. The attractors KD1 and KD2 each tile R2, i.e. have area one. Nevertheless, the

multiple attractor KD12 defined by alternating M1 and M2 is not a tile. This can be seen, by
defining the stationary attractor corresponding to

M12 = M2M1 =
[−3 −4

3 2

]
, D12 = M2D1 +D2 =

{[−2
−1

]
,
[−2

0

]
,
[−2

1

]
,
[

0
−2

]
,
[

0
−1

]
,
[

0
0

]}
,

and using the method described in [Gröchenig and Haas, 1994, (5), (6)], which we implemented
in Matlab, or heuristically by looking at the plots of the attractor in Figure 2.4; the attractor
KD12 obviously has area greater than one. 4

Figure 2.4: The attractors KD1 , KD2 and the multiple attractor KD12 as defined in Exam-
ple 2.2.3. The first two attractors are tiles, whereas the third is not a tile. The black
unit square is plotted to be able to compare the sizes of the attractors.

Similarly, there exists pairs of dilation matrices and digit sets whose attractors are not tiles,
but a multiple scheme defined using these pairs corresponds to a tile.

Example 2.2.4. Let M3 = M5 = 2, D3 = {0, 3}, D5 = {0, 5}. Clearly KD3 = [0, 3] and
KD5 = [0, 5]. Quite surprisingly, the attractor KD35 arising from alternating M3 and M5,
defined by M35 = 4, D35 = {0, 3, 10, 13}, is a tile. The attractor KD35 is plotted in Figure 2.5.

Again, we used our implementation of the algorithm in [Gröchenig and Haas, 1994] to check
whether the attractors are tiles or not. 4

Figure 2.5: The attractor KD35 from Example 2.2.4, which is a tile.
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2 Attractors and tiles

Lagarias and Wang [1997, Theorem 1.1] proved that if M ∈ Zs×s is a dilation matrix and
D ⊆ Zs is a corresponding digit set, then

(i) λ (KD) ∈ N and

(ii) there exists an invertible matrix Γ ∈ Zs×s such that ΓZs +KD = Rs and (γ′+KD)∩ (γ+
KD) ' ∅ for all γ, γ′ ∈ ΓZs, γ 6= γ′.

Both statements are wrong in the multiple case in general, as Example 2.2.5 shows.

Example 2.2.5. For M1 = M2 = 2, D1 = {0, 1}, D2 = {0, 3}, the attractor KD, j corresponding
to the ordering j1 = j2 = 1, jn = 2 for all n ≥ 3, is the interval [0, 3

2 ], thus λ (KD, j) /∈ N. Clearly,
there also does not exists a subset X ⊆ Z such that X + KD, j covers R without essential
overlap, thus (ii) does not hold either. To show that, we assume without loss of generality that
0 ∈ X. To cover the point

{
7
4

}
we need to have 1 ∈ X, which on the other hand implies that

(0 + [0, 3
2 ]) ∩ (1 + [0, 3

2 ]) 6' ∅. 4

Example 2.2.5 shows that the Lebesgue measure of the attractors KD, j[r] may depend on r.

Indeed, Lemma 2.2.6 shows that λ
(
KQ, j[r]

)
, r ∈ N, forms a bounded, monotone increasing

sequence in r.

Proposition 2.2.6. If {Mj ∈ Zs×s : j = 1, . . . , J} is jointly expanding with corresponding digits

sets Dj ' Zs/MjZs and j ∈ {1, . . . , J}N, then the Lebesgue measure of the attractors KD, j[r] is
a bounded, monotone increasing sequence in r ∈ N.

Proof. Let r ∈ N. Using that the dilation matrices Mj are invertible, #Dj = |detMj | for
j ∈ {1, . . . , J} and taking measure in Equation (2.1.10) we get

|detMjr |λ
(
KD, j[r]

)
= λ

(
MjrKD, j[r]

)
= λ

(
Djr +KD, j[r+1]

)
≤ #Djrλ

(
KD, j[r+1]

)
= |detMjr |λ

(
KD, j[r+1]

)
.

(2.2.1)

Thus, the Lebesgue measures of the attractors are monotonically increasing with r ∈ N. The
sequence is bounded by Lemma 2.1.14.

We failed to provide a concrete example of a multiple attractor whose area is strictly increasing
in r ∈ N.

Conjecture 2.2.7. Let M1 = M2 = 2, D1 = {0, 1}, D2 = {0, 3} and define j = (jn)n ∈ {1, 2}N
by

jn =

{
1 if n = m2 for m ∈ N and

2 otherwise.

We conjecture that λ
(
KD, j[r]

)
is strictly increasing in r ∈ N.

In the stationary case the inequality in (2.2.1) becomes an equality. Using this, it is straightfor-
ward to show (see e.g. [Lagarias and Wang, 1996b, Theorem 1.1]) that the boundary of stationary
attractors have Lebesgue measure zero. Whether the same holds for multiple attractors remains
an open problem, worth to be investigated.

Remark 2.2.8. The function checktile [Mejstrik, 2018b] implements an algorithm by Gröche-
nig and Haas [1994], checking whether the attractor corresponding to a pair of a dilation matrix
and corresponding digit set is a tile or not. A simple Matlab implementation of this function is
listed in Section 2.3.
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2.3 Appendix

2.3 Appendix for Chapter 2

Algorithm 2.3.1. Implementation of the algorithm [Gröchenig and Haas, 1994] in Matlab.
The algorithm checks whether the attractor corresponding to a pair of a dilation matrix and a
corresponding digit set is a tile.

function [ flag, C, T ] = checktile( M, D )

% Computes if a pair dilation-matrix/digit-set generates a tile

% M: dilation matrix; D: digit set for M;

% flag: 1: tile, 0: no tile, NaN: Result needs to be checked by hand;

% C: Contact matrix; T: Contact vectors

% E.g.: M = [ 1 2; -1 1 ]; D = [ 0 0; 1 0; 2 0 ]'; [ flag, C, T ] = checktile( M, D );

T = contactvectors( M, D ); %make contact vectors

C = contactmatrix( M, D, T ); %make contact matrix

rhoval = max(abs(eig(C))); detval = abs(det(M));

if(rhoval<detval-.1); flag = 1; fprintf('(M,D) generates a tile.\n');

elseif(rhoval>detval+.1); flag = 0; fprintf('(M,D) generates no tile.\n');

else; flag = nan; fprintf('If rho(C)<abs(det(M)), then (M,D) generates a tile.\n');

end;

function [ T ] = contactvectors( M, D )

% Computes the matrices \mathcal{T}_n and \mathcal{T} as described in

% Groechenig, Haas - Self-Similar Lattice Tilings, Thm 2.2 and Lem 4.5

dim = size(M,1);

T0 = [ eye(dim) -eye(dim) ]; %start-vectors for lattice \ZZ^2, T0=\mathcal{T}_0

Tn{1} = T0;

detM = abs(det(M));

while(true)

val = M\setplus(Tn{end},D,-D);

idx = all(abs(val-round(val))<1/(2*detM),1);

Tn{end+1} = unique([ round(val(:,idx)) Tn{end} ].','rows').';

%The Tn are not necessarily contained in each other

if(isequal(Tn{end},Tn{end-1}));

T = unique([Tn{:}].','rows').';

break;

end;

end

idx = ismember(T.',zeros(1,dim),'rows');

T(:,idx) =[]; %remove zero vector, see Def of \mathcal{T}_n^* before Lem 4.5

function [ C ] = contactmatrix( M, D, T ); %constructs contact matrix

nT = size(T,2); C = zeros(nT,nT);

for k = 1:nT; for l = 1:nT;

val = intersect( setplus(M*T(:,k),D).', setplus(T(:,l),D).', 'rows').';

C(k,l) = size(val,2);

end; end;

function [ X ] = setplus( varargin )

% setplus(A,B) = { x=a+b : a in A, b in B}, Note: The function operates column wise

sze = size(varargin,2); %number of sets

X = varargin{sze}; %the output set

for j = sze-1:-1:1 %iterate through all sets

A = varargin{j}; %the set to be added

X = repmat(A,1,size(X,2))+reshape(repmat(X,size(A,2),1),size(A,1),[]); %add set

X = unique(X','rows')'; %remove duplicates

end
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3 Multiple subdivision

Four is infinity.

(Nira Dyn)

In this chapter we study the matrix approach in the setting of multiple subdivision. Mul-
tiple subdivision schemes, in contrast to stationary or non-stationary schemes, allow for level
dependent subdivision weights and for level dependent dilation matrices. The latter property of
multiple subdivision makes the standard definition of the transition matrices, crucial ingredient
of the matrix approach in the stationary and non-stationary settings, inapplicable. We show
how to avoid this obstacle and characterize the convergence of multiple subdivision schemes in
terms of the joint spectral radius of certain square matrices derived from subdivision weights.

3.1 General definitions

The definition of subdivision operators associated to finite sets of finitely supported masks and
jointly expanding dilation matrices is done analogously to the stationary or the non-stationary
case.

Definition 3.1.1 ([Cavaretta, Dahmen and Micchelli, 1991, Equation (1.4)]). For a mask a ∈
`0(Zs) and a dilation matrix M ∈ Zs×s the subdivision operator S : `(Zs) → `(Zs) defined by
the pair (a,M) is given by

Sc =
∑
β∈Zs

a( · −Mβ)c(β). (3.1.1)

We identify the operator S defined by the pair (a,M) with the pair (a,M) itself.

The concept of multiple subdivision schemes was introduced by Sauer [2012].

Definition 3.1.2. Given masks {aj ∈ `0(Zs) : j = 1, . . . , J} and jointly expanding matrices
{Mj ∈ Zs×s : j = 1, . . . , J}.

(i) We define the finite set S of subdivision operators Sj by

S =
{
Sj = (aj ,Mj) : aj ∈ `0(Zs), Mj ∈ Zs×s, j = 1, . . . , J

}
.

(ii) A sequence (Sjn)n∈N ∈ SN, jn ∈ {1, . . . , J}, is called a (multiple) subdivision scheme.

Remark 3.1.3. The concept of multiple subdivision generalizes the stationary and non-stat-
ionary setting. Indeed, the set SN of all possible (multiple) subdivision schemes contains sta-
tionary subdivision schemes; the constant sequences (Sj)n∈N ∈ SN, n ∈ N, with Sj ∈ S . The
set SN also includes certain non-stationary subdivision schemes; the sequences (Sjn)n∈N ∈ SN
with the subdivision operators Sjn ∈ S defined by the pairs (ajn ,M).

By omitting the assumption that the matrices {Mj ∈ Zs×s : j = 1, . . . , J} are jointly expand-
ing, the setting of multiple subdivision also includes Lane-Riesenfeld algorithms [Lane and
Riesenfeld, 1980; Cashman, Hormann and Reif, 2013].
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3 Multiple subdivision

Given a multiple subdivision scheme (Sjn)n∈N ∈ SN and starting data c ∈ `(Zs), in the nth

iteration of the subdivision process we attach the values of the sequence Sjn · · ·Sj1c to the grid
M−1
j1
· · ·M−1

jn
Zs. Since the dilation matrices are jointly expanding, the grid M−1

j1
· · ·M−1

jn
Zs gets

finer and finer and eventually the sequence may be identified with a function defined on Rs.

Definition 3.1.4. Let S be a finite set of subdivision operators and j = (jn)n ∈ {1, . . . , J}N.

(i) We say a (multiple) subdivision scheme (Sjn)n∈N ∈ SN is convergent if for every sequence
c ∈ `∞(Zs) there exists a function gc, j ∈ C(Rs) (which is non-zero for at least one se-
quence c) such that

lim
n→∞

∣∣∣∣∣∣gc, j(M−1
j1
· · ·M−1

jn
· )− Sjn · · ·Sj1c( · )

∣∣∣∣∣∣
`∞

= 0. (3.1.2)

(ii) If the subdivision scheme (Sjn)n∈N is convergent, we write

gc, j = lim
n→∞

Sjn · · ·Sj1c. (3.1.3)

(iii) We say that SN is convergent, whenever every subdivision scheme in SN is convergent.

This definition coincides in the stationary and non-stationary cases with the definition of
convergence of stationary subdivision schemes [Cavaretta, Dahmen and Micchelli, 1991, Defini-
tion 2.1] and non-stationary subdivision schemes [Dyn and Levin, 1995, Definition 1].

Example 3.1.5. Let S1 = (a1,M1), S2 = (a2,M2), with

a1 =
1

4

[
−1 −2 2 6 3

]T
, M1 = 2,

a2 =
1

4

[
3 2 2 2 −1

]T
, M2 = 2.

Using the theory of stationary subdivision [Daubechies and Lagarias, 1992b, Theorem 2.2] we
can compute that the stationary subdivision schemes (S1)n∈N and (S2)n∈N both converge to
functions with Hölder-regularity α1 = α2 = log2(4/3) ' 0.4150. Nevertheless, there exists a
multiple scheme consisting of operators S1 and S2 which is not convergent; for example the
periodic scheme (S2S1)n∈N. The generated sequences of (S1)n∈N, (S2)n∈N and (S1S2)n∈N for
starting data c = δ after 10 iterations is plotted in Figure 3.1.

For we lack any theory yet, we proof the statements in this example in Section 3.6. 4

Figure 3.1: The subdivision schemes defined in Example 3.1.5 applied ten times to the δ-
sequence. One can guess that the schemes (S1)n∈N and (S2)n∈N are convergent,
whereas (S2S1)n∈N is not.
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3.1 General definitions

The necessary conditions, the sum rules of order one, for convergence of stationary subdivi-
sion schemes in SN are well known. If the stationary subdivision scheme corresponding to a
subdivision operator S = (a,M) is convergent, then

∑
β∈Zs a(Mβ + α) = 1 for all α ∈ Zs, see

e.g. [Cavaretta, Dahmen and Micchelli, 1991; Daubechies and Lagarias, 1992a; Jetter and Plonka,
2001; Jia and Jiang, 2002]. Together with Definition 3.1.6 this immediately gives Lemma 3.1.7.

Definition 3.1.6 ([Strang and Fix, 1973, in statement of Theorem 1], [Jia, 1998, Equation (3.6)]).
We say a subdivision operator S = (a,M) satisfies

(i) sum rules of order 1 if for all α ∈ Zs∑
β∈Zs

a(Mβ + α) = 1, (3.1.4)

(ii) sum rules of order k ∈ N, k ≥ 2, if for all ν ∈ Ns0, 0 ≤ |ν| ≤ k − 1 and for all α, α′ ∈ Zs∑
β∈Zs

(Mβ + α)νa(Mβ + α) =
∑
β∈Zs

(Mβ + α′)νa(Mβ + α′). (3.1.5)

Lemma 3.1.7. If SN is convergent, then every stationary subdivision scheme defined by the pair
(aj ,Mj), j ∈ {1, . . . , J} is convergent and its mask aj satisfies the sum rules of order 1.

The result of Lemma 3.1.7 gives rise to the following assumption.

Assumption 3.1.8 (S). We assume that the masks aj, j ∈ {1, . . . , J} satisfy sum rules of
order 1.

Using sum rules one can construct masks of subdivision schemes.

Example 3.1.9. We construct a univariate subdivision operator with dilation M = 2, whose
mask a has support supp a = {0, 1, 2, 3} and satisfies sum rules of order 3. By (3.1.4) and (3.1.5)
we get for k = 1, 2, 3, the following system of equations

a1 + a3 = a0 + a2 = 1

a1 + 3a3 = 2a2

a1 + 9a3 = 4a2,

which has the unique solution a = 1
4

[
1 3 3 1

]T
. The basic limit function of the subdivision

scheme corresponding to this subdivision operator is plotted in Figure 3.2. Note that sum rules
alone are not sufficient for a subdivision scheme to be convergent, see Example 3.1.5. 4

Figure 3.2: The basic limit function for the subdivision scheme from Example 3.1.9.
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3 Multiple subdivision

The limit function gc, j in (3.1.3) with the starting sequence c = δ is called basic limit func-
tion. For multiple subdivision schemes, similarly to the non-stationary setting, every convergent
scheme possesses a sequence of basic limit functions, which are mutually refinable and generated
by certain (multiple) subdivision schemes (Sjn)n≥r ∈ SN, r ∈ N, related by the shift in the
ordering of the corresponding subdivision operators.

Definition 3.1.10. For a (multiple) convergent subdivision scheme (Sjn)n∈N ∈ SN, we define
the sequence of basic limit functions by

φ j[r] = lim
n→∞

Sjr+n · · ·Sjr+1Sjrδ, δ(α) =

{
1, α = 0
0, otherwise

, r ∈ N. (3.1.6)

If the scheme (Sjn)n∈N is stationary, i.e. Sjn = S for all n ∈ N, then φ j[r] = φ for all r ∈ N.

Remark 3.1.11. Note that, since j[r] ∈ {1, . . . , J}N, r = 2, 3, . . ., the functions φ j[r] by them-

selves are limits of subdivision schemes in SN.

The proof of the mutual refinability of the basic limit functions φj[r] , r ∈ N, is analogous
to the stationary or non-stationary setting. Lemma 3.1.12 and Proposition 3.1.13 are a direct
generalization of [Cavaretta, Dahmen and Micchelli, 1991, Theorem 2.1]. Lemma 3.1.12 gives
another constructive approximation of basic limit functions φ j than Definition 3.1.10, by refining
functions instead of sequences.

Lemma 3.1.12. Let ψn ∈ C0(Rs), n ∈ N, be a sequence of continuous, uniformly bounded
functions, i.e. there exists Cψ > 0, Kψ ⊆ Rs, compact, such that

||ψn||∞ ≤ Cψ <∞, n ∈ N,

with support
suppψn ⊆ Kψ, n ∈ N,

and such that ∑
α∈Zs

ψn(x− α) = 1, x ∈ Rs, n ∈ N.

If (Sjn)n∈N ∈ SN is a convergent subdivision scheme and c ∈ `(Zs) then

gc, j[r] = lim
n→∞

∑
α∈Zs

c(α)Tjr · · ·Tjnψn( · − α), r ∈ N, (3.1.7)

uniformly on compact subsets of Rs, where

Tjψn =
∑
α∈Zs

aj(α)ψn(Mj · − α), j ∈ {1, . . . , J} , n ∈ N. (3.1.8)

Proof. By Remark 3.1.11, we can assume without loss of generality that r = 1. By the definition
of Tjn , we get for n ∈ N, x ∈ Rs,∑

α∈Zs
c(α)Tjnψn(x− α) =

∑
α∈Zs

c(α)
∑
β∈Zs

ajn(β)ψn(Mjnx−Mjnα− β)

=
∑
γ∈Zs

∑
α∈Zs

c(α)ajn(γ −Mjnα)ψn(Mjnx− γ)

=
∑
γ∈Zs

Sjnc(γ)ψn(Mjnx− γ).

(3.1.9)
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3.1 General definitions

We can apply (3.1.9) iteratively to obtain for all n ∈ N, x ∈ Rs,∑
α∈Zs

c(α)Tj1 · · ·Tjnψn(x− α) =
∑
γ∈Zs

Sjn · · ·Sj1c(γ)ψn(Mjn · · ·Mj1x− γ). (3.1.10)

We show next that the right hand side of (3.1.10) converges uniformly on compact subsets to
gc, j in Definition 3.1.4. Let ε > 0 and K ⊆ Rs compact. For x ∈ K, n ∈ N, we get∣∣∣gc, j(x)−

∑
γ∈Zs

Sjn · · ·Sj1c(γ)ψn(Mjn · · ·Mj1x− γ)
∣∣∣ =

=
∑
γ∈Zs

Mjn ···Mj1
x−γ∈Kψ

∣∣∣(gc, j(x)− Sjn · · ·Sj1c(γ)
)
ψn(Mjn · · ·Mj1x− γ)

∣∣∣
≤ Cψ

∑
γ∈Zs

Mjn ···Mj1
x−γ∈Kψ

∣∣∣gc, j(x)− Sjn · · ·Sj1c(γ)
∣∣∣

≤ Cψ
∑
γ∈Zs

Mjn ···Mj1
x−γ∈Kψ

( ∣∣∣gc, j(x)− gc, j(M−1
j1
· · ·M−1

jn
γ)
∣∣∣+
∣∣∣gc, j(M−1

j1
· · ·M−1

jn
γ)− Sjn · · ·Sj1c(γ)

∣∣∣ ).
(3.1.11)

Due to the uniform continuity of gc, j on K, the fact that the dilation matrices are jointly
expanding and that suppψn ⊆ Kψ is compact, we conclude that there exists N1 ∈ N such that
for all n > N1, Mjn · · ·Mj1x− γ ∈ Kψ,∣∣∣gc, j(x)− gc, j(M−1

j1
· · ·M−1

jn
γ)
∣∣∣ < ε.

Due to the convergence of the subdivision scheme, there exists N2 ∈ N such that for n > N2,
γ ∈ Zs, ∣∣∣gc, j(M−1

j1
· · ·M−1

jn
γ)− Sjn · · ·Sj1c(γ)

∣∣∣ < ε.

With y = Mjn · · ·Mj1x ∈ Rs being a shift for Kψ, the number of terms in the sum∑
γ∈Zs

Mjn ···Mj1
x−γ∈Kψ

in (3.1.11) can be bounded by # {(y −Kψ) ∩ Zs}.
For N ≥ max {N1, N2}, using the triangle inequality and (3.1.10), we get that for x ∈ K,

n ∈ N, ∣∣∣∣∣∑
α∈Zs

c(α)Tj1 · · ·Tjnψn(x− α)− gc, j(x)

∣∣∣∣∣ < max
y∈Rs

# {(y −Kψ) ∩ Zs} · Cψ · 2ε.

Therefore,

lim
n→∞

∑
α∈Zs

c(α)Tj1 · · ·Tjnψn( · − α) = gc, j .
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3 Multiple subdivision

Using Lemma 3.1.12 we prove the following properties of basic limit functions.

Proposition 3.1.13. If (Sjn)n∈N ∈ SN is a convergent subdivision scheme, then the following
holds:

(i) The basic limit functions φj[r], r ∈ N, are mutually refinable, i.e. they satisfy the system
of refinement equations

φ j[r](x) =
∑
β∈Zs

ajr(β)φ j[r+1](Mjrx− β), x ∈ Rs, r ∈ N, (3.1.12)

or, equivalently,
φ j[r] = Tjrφ j[r+1] , r ∈ N, (3.1.13)

where Tj is defined in (3.1.8).

(ii) The basic limit function φj is compactly supported, precisely,

suppφ j ⊆ Ksupp a, j , with (supp a)j = supp aj, j ∈ {1, . . . , J}.

(iii) There exists CS > 0, depending only on S, such that

||φ j ||∞ < CS .

(iv) Any limit function of the multiple subdivision scheme corresponding to a starting sequence
c ∈ `(Zs) satisfies

gc, j =
∑
α∈Zs

c(α)φ j(x− α), c ∈ `(Zs). (3.1.14)

(v) The basic limit functions φ j generates a partition of unity, i.e.∑
α∈Zs

φ j(x− α) = 1, x ∈ Rs. (3.1.15)

(vi) The basic limit functions φ j[r] are unique, i.e. they are the only continuous, uniformly
bounded, compactly supported functions which satisfy (3.1.12) and (3.1.15).

Proof. Let ψ ∈ C0(Rs) be a continuous, compactly supported function, such that
∑

α∈Zs ψ(x−
α) = 1 for all x ∈ Rs.

(i) For c = δ, by (3.1.6), we get gc, j[r] = φ j[r] , r ∈ N, and thus, by (3.1.7),

lim
n→∞

Tjr+1 · · ·Tjnψ = φ j[r+1] , r ∈ N.

Consequently, it follows that φ j[r] = Tjrφ j[r+1] , r ∈ N.
(ii) We show first by induction that

suppSjn · · ·Sj1δ ⊆Mjn · · ·Mj2 supp aj1 +Mjn · · ·Mj3 supp aj2 + · · ·+ supp ajn .

For n = 1 we have Sj1δ = aj1 which implies suppSj1 = supp aj1 . Now, assume that for n ∈ N we
have shown that suppSjn . . . Sj1δ ⊆Mjn · · ·Mj2 supp aj1 +Mjn · · ·Mj3 supp aj2 + · · ·+ supp ajn .
By the definition of the subdivision operator Sj , we get

Sjn+1(Sjn · · ·Sj1δ)(α) =
∑
β∈Zs

ajn+1(α−Mjn+1β)Sjn . . . Sj1δ(β),
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3.1 General definitions

which can only be non-zero if α − Mjn+1β ∈ supp ajn+1 and β ∈ suppSjn . . . Sj1δ. There-
fore, α ∈Mjn+1β + supp ajn+1 ⊆Mjn+1Mjn · · ·Mj2 supp aj1 +Mjn+1Mjn · · ·Mj3 supp aj2 + · · ·+
Mjn+1 supp ajn + supp ajn+1 , which proves the claim.

Let Kn = {x ∈ Rs : x = M−1
j1
· · ·M−1

jn
α, α ∈ suppSjn · · ·Sj1δ}. Thus, limn→∞Kn = Ksupp a, j

in the Hausdorff metric. Therefore, using (3.1.2), we see that suppφ j ⊆ Ksupp a, j .

(iii) Let d : {1, . . . , J}N×{1, . . . , J}N → R+ be metric define by d( j, j′) =
∑∞

n=1 J
−n |jn − j′n|.

The space {1, . . . , J}N with this metric is compact. By [Sauer, 2012, Corollary 1], the basic limit
functions φ j depend continuously on j with respect to the metric d. Thus the supremum

CS = sup
j∈{1,...,J}N

||φ j ||∞ <∞

is attained and finite.
(iv) This follows directly from the linearity of the subdivision operators.
(v) For c(α) = 1 for all α ∈ Zs, it follows by Lemma 3.1.7 that Sjc(α) = 1 for all α ∈ Zs,

j ∈ {1, . . . , J}. Thus, by (3.1.6), gc, j[r](x) = 1 for all x ∈ Rs, r ∈ N. Therefore, by (3.1.14),

1 =
∑
α∈Zs

φ j[r](x− α), r ∈ N.

(vi) Without loss of generality let r = 1. Assume there exists a sequence of uniformly
bounded, continuous, compactly supported functions φ̃n, which satisfy (3.1.13) and (3.1.15).
By (3.1.13) it follows that φ̃1 = Tj1 · · ·Tjn φ̃n+1, n ∈ N, and, by Lemma 3.1.12, it follows that
limTj1 · · ·Tjn φ̃n+1 = φ j . Therefore, φ̃1 = φ j[1] .

Example 3.1.14. Let S1 = (a1,M1) with a1 = 1
4

[
1 4 3

]T
, M1 = 2, S2 = (a2,M2) with

a2 = 1
4

[
1 3 3 1

]T
, M2 = 2 and and j ∈ {1, 2}N defined by jn = 1 for n odd and jn = 2 for

n even. By Proposition 3.1.13 the basic limit functions φ j[1] and φ j[2] satisfy

φ j[1] =
1

4
φ j[2](2 · ) + φ j[2](2 · − 1) +

3

4
φ j[2](2 · − 2) and (3.1.16)

φ j[2] =
1

4
φ j[1](2 · ) +

3

4
φ j[1](2 · − 1) +

3

4
φ j[1](2 · − 2) +

1

4
φ j[1](2 · − 3). (3.1.17)

The two basic limit functions φ j[1] and φ j[2] can be seen in Figure 3.3 together with the dilated
and scaled versions of φ j[2] and φ j[1] occurring in (3.1.16) and (3.1.17), respectively. 4

Figure 3.3: The basic limit functions from Example 3.1.14. The functions φ j[1] and φ j[2] are
plotted in black. The scaled and dilated versions of φ j[2] and φ j[1] from (3.1.16)
and (3.1.17) are plotted in grey.
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3 Multiple subdivision

Example 3.1.15 shows that for masks with negative entries suppφ j[r] $ Ksupp a, j[r] is indeed
possible.

Example 3.1.15. Let a = 1
2

[
1 2 1 −1 −2 −1 1 2 1

]T
, M = 2. The corresponding

basic limit function

φ(x) =



x/3 if x ∈ [0, 1],

2/3−x/3 if x ∈ [1, 2],

−3/3 +x/3 if x ∈ [3, 4],

5/3−x/3 if x ∈ [4, 5],

−6/3 +x/3 if x ∈ [6, 7],

8/3−x/3 if x ∈ [7, 8] and

0 otherwise.

has support suppφ = [0, 2] ∪ [3, 5] ∪ [6, 8] which is a strict subset of Ksupp a = [0, 8]. The basic
limit function is plotted in Figure 3.4. 4

Figure 3.4: The basic limit function φ from Example 3.1.15.

Remark 3.1.16. The function blf [Mejstrik, 2018b] plots the basic limit function corresponding
to multiple subdivision schemes.

3.2 Transition matrices and matrix refinement equations

By Proposition 3.1.13, for given c ∈ `∞(Zs) the limit function gc,j in (3.1.3) of the subdivision
scheme (Sjn)n∈N ∈ SN is a linear combination of the integer shifts of the corresponding basic
limit function φj[1] . Thus, the convergence analysis of SN is equivalent to the analysis of the
corresponding basic limit functions. In Section 3.2, we show how to rewrite (3.1.12) to an
equivalent vector-valued form, where the summation in (3.1.12) is replaced by a matrix vector
multiplication. To do that we need to gain more insight into the structure of the supports of
the basic limit functions.

Similarly to the stationary [Cavaretta, Dahmen and Micchelli, 1991] and non-stationary set-
tings [Cohen and Dyn, 1996], there are two important ingredients of our construction: the
transition operators and their common finite dimensional invariant subspaces. In Lemma 3.2.9
we provide an algorithm for the construction of a minimal, invariant subspace of the transition
operators from Definition 3.2.1. The corresponding finite set ΩC leads to transition matrices of
minimal size, and thus is more suitable for numerical computations.

Definition 3.2.1. Let j ∈ {1, . . . , J}. For the subdivision mask aj ∈ `0(Zs) and the dilation
matrix Mj ∈ Zs×s with the digit set Dj ' Zs/MjZs, we define the transition operator Td,j :
`(Zs)→ `(Zs) by

Td,jv =
∑
β∈Zs

v(β)aj(Mj · − β + d), d ∈ Dj , v ∈ `(Zs). (3.2.1)

The set of all transition operators is denoted by

T = {Td,j : d ∈ Dj , j = 1, . . . , J} .
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3.2 Transition matrices and matrix refinement equations

The result of Lemma 3.2.3 ensures the existence of a common finite dimensional invariant
subspace of the transition operators in T , which allows us to restrict the transition operators
Td,j to matrices.

Definition 3.2.2. Let Ω ⊆ Zs. The set `(Ω) = {v ∈ `(Zs) : supp v ⊆ Ω} is the set of all
sequences v ∈ `(Zs) supported on Ω.

Lemma 3.2.3. Let S = {Sj : j = 1, . . . , J} be a finite set of subdivision operators. There exists
a finite set ΩZ ⊆ Zs such that `(ΩZ) is invariant under all transition operators Td,j in T .

Proof. We define the sets

ΩR = cl
⋃

j∈{1,...,J}N
Ksupp a−D, j and ΩZ = ΩR ∩ Zs, (3.2.2)

where (supp a−D)j = supp aj−Dj , j ∈ {1, . . . , J}. The set ΩR is bounded due to Lemma 2.1.14.
Let d ∈ Dj for j ∈ {1, . . . , J}. We show that Td,j : `(ΩZ)→ `(ΩZ). Indeed, if v ∈ `(ΩZ), then,

by (3.2.1),

supp(Td,jv) ⊆M−1
j (supp aj − d+ ΩZ) ∩ Zs ⊆

⋃
j∈{1,...,J}

M−1
j (supp aj −Dj + ΩZ) ∩ Zs

⊆
⋃

j∈{1,...,J}

M−1
j

(
supp aj −Dj + cl

⋃
j∈{1,...,J}s

Ksupp a−D, j

)
∩ Zs

⊆ cl
⋃

j∈{1,...,J}s
Ksupp a−D, j ∩ Zs = ΩZ,

where the last inclusion follows by clA+ clB ⊆ clA+B for A,B ⊆ Rs.

Example 3.2.4. We construct (numerically) the sets ΩZ and ΩR as defined in Lemma 3.2.3 for
the multiple subdivision scheme introduced in [Cotronei, Ghisi, Rossini and Sauer, 2015] defined
by S = {(a1,M1), (a2,M2)} with a1 = a2 = 1

3

[
1 2 3 2 1

]
, M1 =

[
1 1
1 −2

]
, M2 =

[
2 −1
1 −2

]
. The

authors of [Cotronei, Ghisi, Rossini and Sauer, 2015] use this subdivision scheme to construct
wavelets which can handle directional singularities.

The matrices M1 and M2 are jointly expanding, due to ‖M−1
j1
M−1
j2
‖2 < 1 for all j1, j2 ∈ {1, 2}.

A numerical approximation of the set ΩR and ΩZ can be seen in Figure 3.5. The set ΩR is
plotted in grey and the set ΩZ is marked with circles. Note that for points near the boundary
(for example

[−4
−4

]
) it is not clear whether they are in the set ΩR or not. Thus, for practical

purposes, Lemma 3.2.3 cannot be used to determine an invariant set for the transition operators
Td,j , due to the fractal nature of the attractors defined by (3.2.2). A more practical set introduced
later is the set ΩC constructed by Algorithm 3.2.9; its elements are marked with ×. 4

Figure 3.5: The sets ΩR (in grey), ΩZ (marked with ◦) and ΩC (marked with ×) from Exam-
ple 3.2.4.
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3 Multiple subdivision

Remark 3.2.5. The image on page 6 (as well as the image in Figure 3.5) are attractors defined
by (3.2.2). These sets can be plotted using the function tile with the option ’supertile’.

The result of Lemma 3.2.3 allows us to associate each transition operator Td,j with a certain
square matrix.

Definition 3.2.6. Let Ω ⊆ Zs be finite and such that `(Ω) is T invariant. For the operators in
T we define the transition matrices by

Td,j,Ω =
[
aj(Mjα− β + d)

]
α,β∈Ω

, d ∈ Dj , j ∈ {1, . . . , J} . (3.2.3)

Remark 3.2.7. In the rest of the paper we use two other sets Ω ⊆ Zs such that `(Ω) is invariant
under all operators in T : the set ΩC from Algorithm 3.2.9 for numerical computations and the
larger set ΩV from Proposition 3.4.21 for the theoretical analysis in Section 3.4.

The sum rules of order one for the masks aj , Assumption S 3.1.8, become conditions on the
spectral properties of the transition matrices.

Lemma 3.2.8. Let S be a finite set of subdivision operators whose masks satisfy sum rules of
order 1, j ∈ {1, . . . , J}, d ∈ D and define 1 =

[
1 . . . 1

]
∈ R1×s to be the row-vector of all

ones of length s.

(i) If Td,j : `(Ω)→ `(Ω), Ω ⊆ Zs, then the transition matrix Td,j,Ω satisfies 1Td,j,Ω = 1.

(ii) If all entries of Td,j,Ω are non-negative, then 1Td,j,Ω = 1 implies Td,j : `(Ω)→ `(Ω).

Proof. (i) Invariance of `(Ω) under Td,j , d ∈ Dj , j ∈ {1, . . . , J}, implies, by Definition 3.2.1,
that aj(Mjα − β + d) = 0, whenever α /∈ Ω and β ∈ Ω. Since the masks aj satisfy sum rules
of order 1, we conclude that the entries in each column of the corresponding transition matrix
Td,j,Ω sum up to one, since

1 =
∑
α∈Zs

aj(Mjα− β + d) =
∑
α∈Ω

aj(Mjα− β + d), β ∈ Ω.

(ii) Assume that aj(α) ≥ 0 for all α ∈ Zs, j ∈ {1, . . . , J}. Due to 1Td,j,Ω = 1, d ∈ Dj , we get

1 =
∑
α∈Ω

aj(Mjα− β + d), β ∈ Ω.

The masks aj satisfy sum rules of order one, which implies that aj(Mjα − β + d) = 0 for all
α /∈ Ω, β ∈ Ω. Thus, Td,j : `(Ω)→ `(Ω).

For numerical computations of the joint spectral radius, the approximations of ΩZ defined
in Lemma 3.2.3 are of no practical use. The straightforward observation that, without loss of
generality, 0 ∈ ΩR leads to Algorithm 3.2.9 for explicit computation of ΩC ⊆ ΩZ with desired
invariance properties as in Lemma 3.2.8.
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3.2 Transition matrices and matrix refinement equations

Algorithm 3.2.9 (Invariant Omega algorithm).

Ω0 := {0} , n := 0

repeat

n := n+ 1

Ωn := Ωn−1

for j ∈ {1, . . . , J} do

Ωn,j :=
(
M−1
j (supp aj + Ωn −Dj)

)
∩ Zs

Ωn := Ωn ∪ Ωn,j

end

until Ωn = Ωn−1

ΩC := Ωi

Lemma 3.2.10. Given a finite set of subdivision operators S.

(i) Algorithm 3.2.9 constructs a finite set ΩC ⊆ Zs such that `(ΩC) is T invariant.

(ii) ΩC is the smallest set Ω ⊆ Zs by inclusion with 0 ∈ Ω, such that `(Ω) is T invariant.

Proof. (i) We show that the algorithm terminates after finitely many steps. More precisely, we
show, by induction on n ∈ N, that the sets (Ωn)Nn=0, N ∈ N, are increasing, nested subsets of a
modified version of the finite set ΩZ determined in Lemma 3.2.3. Therefore, N is finite.

By assuming that 0 ∈ Dj , 0 ∈ supp aj , j ∈ {1, . . . , J}, by the uniqueness of attractors 2.1.19 (ii)
and the fact that {0} ⊆ M−1

j (supp aj + {0} −Dj), j ∈ {1, . . . , J}, it follows that Ω0 = {0} ⊆
ΩZ ⊆ ΩR, where ΩR is defined by (3.2.2). This implies, there exists a set ΩZ ⊆ Zs such that
0 ∈ ΩZ and `(ΩZ) is T invariant.

Assume that Ωn ⊆ ΩZ, n ≤ N . By Lemma 3.2.3, ΩZ is invariant under all operators
M−1
j (supp aj + · − D), and thus Ωn,j ⊆ ΩZ for all j ∈ {1, . . . , J}. Therefore, Ωn = Ωn−1 ∪(⋃
j∈{1,...,J}Ωn,j

)
⊆ ΩZ. Due to the stopping criterion, we get increasing, nested sets Ω0 $

Ω1 $ Ω2 $ · · · $ ΩN ⊆ ΩZ. Moreover, for ΩC = ΩN = ΩN−1, due to (3.2.1), we get
Td : `(ΩN−1)→ `(ΩN ), d ∈ Dj , j ∈ {1, . . . , J}. Therefore, the claim follows.

(ii) Any set Ω ⊆ Zs, with 0 ∈ Ω and which is T invariant is a superset of ΩC by construction
of ΩC .

Remark 3.2.11. The choice of Ω0 = {0} in Algorithm 3.2.9 is not crucial. Algorithm 3.2.9
constructs a finite set Ω ⊆ Zs, such that `(Ω) is T invariant, with any finite, non-empty, starting
set Ω0 ⊆ Zs.

Remark 3.2.12. The function constructOmega [Mejstrik, 2018b] is an implementation of Al-
gorithm 3.2.9. A simple implementation of Algorithm 3.2.9 for Matlab is given in Section 3.6.

In some cases, the sets ΩZ defined in Lemma 3.2.3 and ΩC constructed by Algorithm 3.2.9
coincide.

Example 3.2.13. (i) For M = 2, D = {0, 1} and supp a = {0, 1, 2, 3}, Algorithm 3.2.9,
generates ΩC = {0, 1, 2} which is a strict subset of ΩZ. Indeed, ΩR = M−1(supp a−D) +
M−2(supp a−D) + · · · = [−1, 3], and thus ΩZ = {−1, 0, 1, 3}.

(ii) Given M = −2, D = {−1, 0} and mask a with support supp a = {0, 1, 2, 3}. By (3.2.2)
ΩR = Ksupp a−D, j = [−7

3 ,
2
3 ], and thus ΩZ = {−2,−1, 0}. Algorithm 3.2.9 produces the

same set. 4
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3 Multiple subdivision

3.3 Support of basic limit functions

Similarly to the stationary and non-stationary settings, the supports of the basic limit func-
tions (φ j[r])r∈N can be covered by the integer shifts of the corresponding attractors KD, j[r] in
Definition 2.1.5, i.e.

suppφ j[r] ⊆ ΩZ +KD, j[r] , (3.3.1)

see Lemma 3.3.1. This leads to a standard matrix form of the refinement equations used for
analysing the existence and regularity of refinable functions in the stationary and multiple
settings. Nevertheless, as already mentioned, even in the stationary setting the set ΩZ cannot
be computed in general. Theorem 3.3.2 improves the result of Lemma 3.3.1, showing that any
finite set Ω ⊆ Zs, such that `(Ω) is T invariant, can replace ΩZ in (3.3.1).

Lemma 3.3.1 is a direct generalization of [Cabrelli, Heil and Molter, 2004, Proposition 2.7].

Lemma 3.3.1. Let S = {Sj : j = 1, . . . , J} be a finite set of subdivision operators and ΩZ ⊆ Zs
defined by (3.2.2). If the subdivision scheme (Sjn)n∈N ∈ SN is convergent, then suppφ j[r] ⊆
ΩZ +KD, j[r] for all r ∈ N.

Proof. Without loss of generality we assume r = 1, i.e. j = j[1]. Let x ∈ suppφ j . By
Lemma 3.1.13 (ii), x ∈ Ksupp a, j , and thus there exist αn ∈ supp ajn , n ∈ N such that x =
.α1α2 . . .. Furthermore, since integer shifts of KD, j cover Rs, there exists ω ∈ Zs and dn ∈ Djn ,
n ∈ N such that x = ω + .d1d2 . . ., or equivalently, ω = .α1α2 . . .− d1d2 . . ..

Therefore, by Corollary 2.1.21 and the definition of ΩR in (3.2.2), ω ∈ ΩR ∩ Zs = ΩZ and
x ∈ ΩZ +KD, j .

For practical purposes it is useful to replace ΩZ in Lemma 3.3.1 by an arbitrary set Ω ⊆ Zs
such that `(Ω) is T invariant.

Theorem 3.3.2. If SN is convergent and Ω ⊆ Zs finite such that `(Ω) is T invariant and
j ∈ {1, . . . , J}N, then suppφ j[r] ⊆ Ω +KD, j[r] for all r ∈ N.

Proof. We prove the claim for the stationary case first. Let ψ ∈ C0(Rs), suppψ ⊆ Ω + KD.
Define, as in Proposition 3.1.13,

Tψ(x) =
∑
α∈Zs

a(α)ψ(Mx− α), x ∈ Rs.

Since `(Ω) is Td invariant for all Td ∈ T , d ∈ D, it follows that suppTψ ⊆ Ω + KD. Indeed, if
ω ∈ Zs, x = .d1d2 . . . ∈ KD, dn ∈ D, then

Tψ(ω + x) =
∑
α∈Zs

a(α)ψ(M(ω + x)− α) =
∑
α∈Zs

a(Mω − α+ d1)ψ(Mx− d1 + α)

=
∑
α∈Ω

a(Mω − α+ d1)ψ(Mx− d1 + α),
(3.3.2)

due to suppψ ⊆ Ω +KD and Mx− d1 ∈ KD. By (3.1.7), Tnψ → φ as n → ∞, where φ is the
basic limit function. We conclude that suppφ ⊆ Ω +KD.

We now show that φ j ⊆ KD, j + Ω in the multiple case. For N ∈ N define the periodic

sequence n(N) ∈ {1, . . . , J}N by

n(N) = (j1, . . . , jN , j1, . . . , jN , j1, . . .).

Note that (Snm)m∈N = (Sjn · · ·Sj1)m∈N is a stationary subdivision scheme. Thus, by the first
part of the proof suppφn(N) ⊆ Ω +KD,n(N) for all N ∈ N. By Proposition 2.1.15, since the sets
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3.3 Support of basic limit functions

Ksupp a,n(N) and KD,n(N) are uniformly bounded, Ksupp a,n(N) → Ksupp a, j and Ω +KD,n(N) →
Ω + KD, j in the Hausdorff metric, as N → ∞, since Ω does not depend on N . Therefore,
suppφ j ⊆ Ω +KD, j .

Example 3.3.3. If a =
[
1 0 0 1

]T
, M = 2, then both Ω1 = {0} and Ω2 = {−2,−1, 1, 2} are

minimal sets in the sense that there exists no set Ω̃ $ Ωi, i ∈ {1, 2}, such that `(Ω̃) is invariant
under all transition matrices. Note that the scheme (a,M) is not convergent which is easily seen
by the fact that Snδ(α) = 0 for all α /∈ 3Z, Indeed, from this it would follow that the basic limit
function is the zero function, which contradicts the assumption that the subdivision scheme is
convergent. 4

Under the additional assumption of convergence, all our numerical examples lead us to Con-
jecture 3.3.4.

Conjecture 3.3.4. If SN is convergent, then there exists a unique, with respect to inclusion,
minimal set Ω ⊆ Zs such that `(Ω) is T invariant.

An immediate consequence of Theorem 3.3.2 and the mutual refinability of the basic limit
functions is Corollary 3.3.5, which allows to compute function values of basic limit functions for
certain subdivision schemes exactly, see e.g. [Daubechies and Lagarias, 1992b, Equation (2.6)]
for the stationary case.

Corollary 3.3.5. If SN is convergent and Ω ⊆ Zs is finite such that `(Ω) is T invariant and
j ∈ {1, . . . , J}N, then for any x = .drdr+1 . . . ∈ KD, j[r], dn ∈ Djn, r ∈ N,[

φ j[r](.drdr+1 . . .+ ω)
]
ω∈Ω

= Tdr,jr,Ω

[
φ j[r+1](.dr+1dr+2 . . .+ ω)

]
ω∈Ω

, (3.3.3)

where Tdr,jr,Ω is defined in (3.2.3).

The following example shows how to compute the exact function values of the basic limit func-
tions at rational points in Rs of all multiple subdivision schemes whose corresponding sequence
j is eventually periodic.

Example 3.3.6. Let (Sjn)n∈N ∈ SN be the multiple subdivision scheme with masks aj , jointly
expanding dilation matrices Mj , j ∈ {1, . . . , J} with corresponding digit sets Dj ' Zs/MZs,
j ∈ {1, . . . , J} and j ∈ {1, . . . , J}N eventually periodic, i.e. j = (j1, . . . , jk, jk+1, . . . , jl), l, k ∈ N,
where jk+1 . . . jl denotes the periodic part of j. Furthermore, let z ∈ suppφ j ∩Qs.

Let ΩC be the set constructed with Algorithm 3.2.9. Since suppφ j ⊆ KD, j +ΩC , there exists
x ∈ KD, j and ω̃ ∈ ΩC , such that z = x + ω̃. Note that, since x ∈ Qs and j is eventually
periodic, the expansion of x is eventually periodic, and thus x = .d1 . . . dmdm+1 . . . dn, di ∈ Dji .
By (3.3.3) and using the periodicity of the digits di of x, we obtain[

φ(.dm+1dm+2 . . .+ ω)
]
ω∈ΩC

= Tdm+1,jm+1 · · ·Tdn,jn
[
φ(.dm+1dm+2 . . .+ ω)

]
ω∈ΩC

.

To obtain the function values
[
φ(.dm+1dm+2 . . .+ ω)

]
ω∈ΩC

, we have to compute an eigenvector

v ∈ RΩC of Tdm+1,jm+1 · · ·Tdn,jn to the eigenvalue 1 which exists by Lemma 3.2.8. By the unique-
ness of the basic limit functions, Proposition 3.1.13 (vi), this eigenvalue is simple. By (3.1.15),
we have to normalize the eigenvector v such that

∑
ω∈ΩC

vω = 1. Finally, the value φ(z) is given
by Td1,j1 · · ·Tdm,jmv|ω̃.

We present an example for Matlab for computing function values of basic limit functions. For
the sake of simplicity and clarity we use a stationary subdivision scheme. Let a=[.5 1 .5],
M=[1 1;-1 1] and define the subdivision operator S=getS({a,M}). The function getS computes
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3 Multiple subdivision

the standard digit set given by (2.1.5) which we can view with D=S{3} and which is given by
d1=[0;0] and d2=[1;0]. We next construct the set OmC=constructOmega(S), given by

OmC =
{[−3
−1

]
,
[−3

0

]
,
[−2
−2

]
,
[−2
−1

]
,
[−2

0

]
,
[−2

1

]
,
[−1
−2

]
,
[−1
−1

]
,
[−1

0

]
,
[−1

1

]
,
[

0
−2

]
,
[

0
−1

]
,
[

0
0

]
,
[

0
1

]
,
[

1
−1

]
,
[

1
0

]}
,

and plot the set OmRR=tile(getS(S,'OmegaRR')) from (3.2.2), the attractor KD=tile(getS(S))
and the support of the basic limit function KA=tile(getS(S,'supp')), for recreational pur-
poses. We choose the point z=[-.2;.4] and compute the values of wt, x and its digit expansion
oo by [oo,~,x]=num2ordering(S,z,'check'). Using the notation from above, the first cell
array in oo is the part .d1 . . . dm and the second cell array in oo is the periodic part dm+1 . . . dn.
Thus, we obtain x=.d1 d2 and wt=z-x, which is in this case x=[-.2;.4] and wt=[0;0]. The
option 'check' ensures that the value of x is computed, for given z /∈ KD. Be aware that the func-
tion num2ordering sometimes fails to find a correct value of x ∈ KD, due to the fractal nature of
the attractors, limited computing time or for points at the boundary of KD, and thus the returned
value of x should be counter-checked by hand. With T=transitionmatrix(S,'Omega',Om) we
compute the transitionmatrices, which are given by

T{1} =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


, T{2} =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

The matrix T{1}T{2} has a simple, leading eigenvalue 1 with normalized corresponding eigen-
vector

v=[0 0 0 0 .1 0 0 .2 .4 0 0 .2 .1 0 0 0]' ∈ ROmC

such that sum(v)=1. Therefore, since wt=[0;0] is the thirteenth entry in OmC, φ(z) = .1. The
basic limit function can be plotted using blf(S).

The computed sets and points are plotted in Figure 3.6. For convenience of the reader, the
raw source code is given in Figure 3.7. 4

Figure 3.6: Plots for the the stationary subdivision scheme defined by S = (1
2

[
1 2 1

]
,[

1 1
−1 1

]
) from Example 3.3.6.
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3.4 Unifying the matrix and operator approach

a = 1/2*[ 1 2 1 ]; %define the mask

M = [ 1 1; -1 1 ]; %define the dilation matrix

S = getS({ a, M }) %define S

D = S{3} %display digit set

OmC = constructOmega(S) %compute Omega_C

T = transitionmatrix(S,'Omega',OmC) %compute transition matrices

2*T{1}, 2*T{2} %display transition matrices

z = [ -.2; .4 ] %choose value for z

[ oo,~, x ] = num2ordering(S,z,'check') %compute x and its digit expansion

wt = z-x %get value of omega_tilde

[ v, d ] = eig(T{1}*T{2}); %compute eigenvectors

d = diag(d) %get index of eigenvalue 1

idx = find(d==1); %get eigenvector to 1

v = v/sum(v) %normalize v

idxom = find(ismember(OmC',wt','rows')) %get index of omega_tilde

v(idxom) %display value phi(z)

% plot commands

plotm(OmC,'.'); %plot Om_C

OmRR = tile(getS(S,'OmegaRR')); %plot Om_RR

KA = tile(getS(S,'supp')); %plot K_{supp a}

KD = tile(getS(S)); %plot K_D

blf(S); %plot phi

Figure 3.7: Listing for Example 3.3.6.

3.4 Unifying the matrix and operator approach

In this section we unify the matrix (joint spectral radius) and operator (restricted spectral ra-
dius) approach in the setting of multiple subdivision schemes, Theorem 3.4.17. Theorem 3.4.17
generalizes similar results in [Charina, Conti and Sauer, 2005; Charina, 2012] that were proven
in the stationary setting for the case of the dilation matrix M = 2I. Thus, our generalization
has two directions: first we allow for general dilation matrices, second we allow for multiple
subdivision schemes.

One of the standard tools for checking the regularity of subdivision schemes is the so-called re-
stricted spectral radius (RSR) that measures the spectral properties of the difference subdivision
operators restricted to a certain subspace of `(Zs), see e.g. [Cavaretta, Dahmen and Micchelli,
1991; Charina, Conti and Sauer, 2005; Charina, 2012; Sauer, 2012]. The concept of the restricted
spectral radius relies on the backward difference operators and difference subdivision schemes
operating on the sequences in `(Zs).

Definition 3.4.1. We define

(i) the lth backward difference operator ∇l : `(Zs)→ `(Zs) by ∇l c = c− c ( · − el), where el,
l ∈ {1, . . . , s}, are the standard unit vectors of Rs,

(ii) the backward difference operator ∇ : `(Zs)→ `(Zs,Rs) by ∇ =
[
∇1 ∇2 . . . ∇s

]T
,

(iii) the µth backward difference operator by ∇̃µ =
∏s
l=1(∇l )µl , µ ∈ Ns0 and

(iv) the (k + 1)st backward difference operator ∇k+1 by the column vector whose entries are
all possible µth backward differences with |µ| = k + 1, k ∈ N0.
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3 Multiple subdivision

We illustrate Definition 3.4.1 on the following example.

Example 3.4.2. For dimension s = 2 we get

∇2δ =

∇̃(2,0)

∇̃(1,1)

∇̃(0,2)

 δ =

∇1∇1

∇1∇2

∇2∇2

 [1] =



1

−2

1

1 −1

−1 1

1 −2 1


.

Note that the entries in the matrix are bi-infinite sequences and we only list their non-zero
elements. 4

Lemma 3.4.3. If k ∈ N0, then ∇k+1 : `(Zs)→ `(Zs,Rn), n =

(
s+ k

s− 1

)
.

Proof. To compute the cardinality of the set # {µ ∈ Ns0 : |µ| = k + 1}, we must choose k + 1
positions out of a set of s elements and each position can be chosen multiple times. This is a
problem of counting the number of combinations with repetition. Hence the number of choices
equals

(
s+k
s−1

)
.

We will often use the following straight forward property of the backward difference operator.

Lemma 3.4.4. For any c ∈ `(Zs), µ ∈ Ns0,

∇̃µc = ∇̃µ
(∑
α∈Zs

c(α)δ( · − α)

)
=
∑
α∈Zs

c(α)∇̃µ δ( · − α). (3.4.1)

Remark 3.4.5. The function diffsequence [Mejstrik, 2018b] implements the backward differ-
ence operators ∇k and ∇̃µ defined in 3.4.1.

Definition 3.4.6. Let k ∈ N0 and S be a finite set of subdivision operators whose masks satisfy
sum rules of order k + 1.

(i) We define a difference subdivision operator (of order k + 1), S′ = (a′,M) : `(Zs) →
`(Zs, Rn), a′ ∈ `0(Zs, Rn×n), n =

(
s+k
s−1

)
, by

∇k+1 S = S′∇k+1 .

(ii) By S ′ we denote a set of the difference subdivision operators (of order k+ 1) S′ associated
to the set S of subdivision operators.

(iii) A sequence (S′jn)n∈N ∈ S ′N, jn ∈ {1, . . . , J}, is called a (multiple) difference subdivision
scheme (of order k + 1).

The existence of difference subdivision operators is ensured by the assumption that the masks
of the subdivision operators fulfil sum rules of a certain order, see e.g. [Cavaretta, Dahmen and
Micchelli, 1991; Möller and Sauer, 2004; Jia, 1998; Sauer, 2002b].

Definition 3.4.7. For k ∈ N0 we define the linear space of polynomial sequences of degree k by

Πk =

{
c ∈ `(Zs) : c(α) =

∑
ν∈N0, |ν|≤k

cνα
ν , cν ∈ R

}
.
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3.4 Unifying the matrix and operator approach

Example 3.4.8. Constant sequences are polynomial sequences of degree 0. The sequence

c =



. . .
... . .

.

8 3 0 −1 0 3 8
· · · 9 4 1 0 1 4 9 · · ·

10 5 2 1 2 5 10

. .
. ...

. . .

 ,

given by c(α) = α1 + α2
2, α ∈ Zs, is a polynomial sequence of degree 2. 4

Lemma 3.4.9. Let k ∈ N0 and S a subdivision operator. The following statements are equiva-
lent:

(i) S is a subdivision operator whose mask satisfies sum rules of order k + 1.

(ii) Πk is invariant under the subdivision operator S.

(iii) There exists a difference subdivision operator S′ of order k + 1 corresponding to S .

See [Jia, 1998, Theorem 5.2] and [Sauer, 2002b, Theorem 3] for more details.

Note that the space of polynomial sequences Πk, k ∈ N0 is invariant under all subdivision
operators whose masks satisfy sum rules of order k + 1; in particular for subdivision operators
corresponding to non-convergent subdivision schemes.

Example 3.4.10. We consider the non-convergent stationary subdivision scheme given by the

operator S = (a,M) with the mask a =
[
1 1

2 −1 1
2 1

]T
and the dilation matrix M = 2.

By [Daubechies and Lagarias, 1992b, Theorem 2.2], the corresponding subdivision scheme is not
convergent. The mask fulfils sum rules of order 2. Indeed, 1 = a−2 + a0 + a2 = a−1 + a1 = 1
and 0 = −2a−2 + 0a0 + 2a2 = −1a−1 + 1a1 = 0.

Thus, the space Π1 of polynomials up to degree 1 is invariant under S. To test this, we choose
the starting sequence c(α) = α if α ≥ 0 and 0 otherwise. Due to the locality of the subdivision
operator, the refined sequences Snc, n ∈ N, restricted to large negative and positive indices,
should be polynomial sequences; indeed, see Figure 3.8. 4

Figure 3.8: The non-convergent subdivision scheme (S)n∈N from Example 3.4.10 applied to the
sequence c, which is a polynomial sequence when restricted to large positive or
negative indices.
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3 Multiple subdivision

Difference subdivision schemes, as defined in 3.4.6, are not uniquely determined. Furthermore,
contrary to the case of dilation M = 2I, for general dilation matrices the support of the masks
of the difference schemes can be larger than the support of the original scheme [Sauer, 2002b,
Remark 3.7].

Example 3.4.11. Let S = (a,M) with a =
1

2

[
1 2 1

]
and M =

[
1 1
−1 1

]
.

The scheme fulfils sum rules of order 2. Indeed, Equations (3.1.4) and (3.1.5) are fulfilled for

ν ∈ {(0, 0), (1, 0), (0, 1)}, α ∈
{[

0
0

]
,

[
0
1

]}
,

1 =
1

2
+

1

2
=
∑
β∈Zs

a(Mβ + [ 0
0 ]) =

∑
β∈Zs

a(Mβ + [ 0
1 ]) =

2

2
= 1,

0 = 0· 1
2

+ 0· 1
2

=
∑
β∈Zs

(Mβ + [ 0
0 ])(1,0)a(Mβ + [ 0

0 ]) =
∑
β∈Zs

(Mβ + [ 0
1 ])(1,0)a(Mβ + [ 0

1 ]) = 0· 2
2

= 0,

1 = 0· 1
2

+ 2· 1
2

=
∑
β∈Zs

(Mβ + [ 0
0 ])(0,1)a(Mβ + [ 0

0 ]) =
∑
β∈Zs

(Mβ + [ 0
1 ])(0,1)a(Mβ + [ 0

1 ]) = 1· 2
2

= 1.

By Lemma 3.4.9, there exists a difference scheme S′ of order one such that ∇1S = S′∇1. We
show next, there exists no difference scheme with a mask

a′ =

[
a(1,1)′ a(1,2)′

a(2,1)′ a(2,2)′

]
,

such that supp a(i,j)′ ⊆ supp a, i, j ∈ {1, 2}. Assume the contrary. To determine the sequences
a(i,j)′ , we solve the linear system ∇1Sδ = S′∇1δ. We first compute

∇Sδ = ∇a =
1

2


1 2 1

−1 −2 −1

1 1 −1 −1


and

S′∇δ =
∑
β∈Zs

[
a(1,1)′ a(1,2)′

a(2,1)′ a(2,2)′

]
( · −Mβ)


1

−1

1 −1

 (β)

=

[
a(1,1)′ + a(1,2)′ − a(1,1)′( · −

[
1
−1

]
)− a(1,2)′( · − [ 1

1 ])

a(2,1)′ + a(2,2)′ − a(2,1)′( · −
[

1
−1

]
)− a(2,2)′( · − [ 1

1 ])

]
.

Again, note that the entries in the matrices are bi-infinite sequences and we only list the non-zero
entries. Thus, we would have to solve the following system of equations:[

0 a
(1,1)′

0,1 + a
(1,2)′

0,1 a
(1,1)′

0,2 + a
(1,2)′

0,2 a
(1,1)′

0,3 + a
(1,2)′

0,3 0

−a(1,1)′

0,1 −a(1,1)′

0,2 −a(1,1)′

0,3 − a(1,2)′

0,1 −a(1,2)′

0,2 −a(1,2)′

0,3

]
=

=
1

2

[
0 1 2 1 0
0 −1 −2 −1 0

]
,
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3.4 Unifying the matrix and operator approach

[
0 a

(2,1)′

0,1 + a
(2,2)′

0,1 a
(2,1)′

0,2 + a
(2,2)′

0,2 a
(2,1)′

0,3 + a
(2,2)′

0,3 0

−a(2,1)′

0,1 −a(2,1)′

0,2 −a(2,1)′

0,3 − a(2,2)′

0,1 −a(2,2)′

0,2 −a(2,2)′

0,3

]
=

=
1

2

[
0 1 1 −1 −1
0 0 0 0 0

]
.

As one can see from the two underlined numbers 0 and −1, this system has no solution.
A possible solution with a mask with larger support is given by

a(1,1)′ =
1

2
1 1 0 0 , a(1,2)′ =

1

2
0 1 1 0 ,

a(2,1)′ =
1

2
1 1 0 0 , a(2,2)′ =

1

2
0 0 −1 −1 .

Another solution is given by

a(1,1)′ =
1

4

0 −1 −1 0

0 0 −1 −1 , a(1,2)′ =
1

4

0 1 1 0

1 1 0 0 ,

a(2,1)′ =
1

2
1 1 0 0 , a(2,2)′ =

1

2
0 0 −1 −1 . 4

In the setting of multiple subdivision, we use the following definition of the restricted spectral
radius.

Definition 3.4.12 ([Sauer, 2012, Section 3, “normalized joint spectral radius”]). Let k ∈ N0

and S be a finite set of subdivision operators whose masks satisfy sum rules of order k + 1 and
S ′ an associated set of difference subdivision operators of order k + 1. The (k + 1)st restricted
norm of S′ ∈ S ′ is defined by

∣∣∣∣S′|∇k+1

∣∣∣∣
∞ = sup

c∈`∞(Zs)
||∇k+1 c||∞=1

∣∣∣∣∣∣S′∇k+1 c
∣∣∣∣∣∣
∞
. (3.4.2)

The (k + 1)st restricted spectral radius (RSR) of S ′ is defined by

RSR(S ′|∇k+1 ) = lim sup
n→∞

sup
S′j∈S′

∣∣∣∣S′jn · · ·S′j1 |∇k+1

∣∣∣∣1/n
∞ .

Difference schemes are used to characterize the convergence properties of multiple subdivision
schemes.

Theorem 3.4.13. [Sauer, 2012, Theorem 2] SN is convergent if and only if there exists a
corresponding set S ′ of difference subdivision operators of order 1, such that RSR(S ′|∇) < 1.

The main result of this section, Theorem 3.4.17, leads to a characterization of convergence of
SN in terms of the joint spectral radius of the transition matrices restricted to a common invariant
subspace. The key to understanding is Lemma 3.4.15, which describes the invariant subspaces
for the transition operators in the matrix approach. These are the analogon to the invariant
subspace of polynomial sequences for the subdivision operators in the operator approach.
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3 Multiple subdivision

Definition 3.4.14. Let Ω ⊆ Zs be finite and k ∈ N0. We define the linear spaces

(i) Vk(Ω) =
{
v ∈ RΩ :

∑
β∈Ω v(β)p(−β) = 0 for all p ∈ Πk

}
and

(ii) Ṽk(Ω) = span
{
v ∈ `0(Zs) : v = ∇̃µ δ( · − β), β ∈ Zs, µ ∈ Ns0, |µ| = k + 1, supp v ⊆ Ω

}
.

Note that we identify finitely supported sequences with vectors, matrices or tensors.

Lemma 3.4.15. If Ω ⊆ Zs is finite and k ∈ N0, then

(i) Ṽk(Ω) ⊆ Vk(Ω) and, if dimVk(Ω) = dim Ṽk(Ω), then Vk(Ω) = Ṽk(Ω).

(ii) Vk+1(Ω) ⊆ Vk(Ω).

(iii) Ṽk+1(Ω) ⊆ Ṽk(Ω).

Proof. (i) Let p ∈ Πk. If v ∈ Ṽk(Ω), then there exist vµ,β ∈ Rs such that

v =
∑
µ∈Ns0
|µ|=k+1

∑
β∈Zs

vµ,β∇̃µ δ( · − β).

Using Lemma 3.4.4 and the fact that ∇̃µ p = 0 for all |µ| ≥ k + 1 we obtain.∑
α∈Zs

v(α)p(−α) =
∑
α∈Zs

∑
µ∈Ns0
|µ|=k+1

∑
β∈Zs

vµ,β∇̃µ δ(α− β)p(−α)

=
∑
µ∈Ns0
|µ|=k+1

∑
β∈Zs

vµ,β
∑
α∈Zs

∇̃µ δ(−β + α)p(−α)

=
∑
µ∈Ns0
|µ|=k+1

∑
β∈Zs

vµ,β∇̃µ
(∑
α∈Zs

δ( · + α)p(−α)

)
(−β)

=
∑
µ∈Ns0
|µ|=k+1

∑
β∈Zs

vµ,β∇̃µ p(−β) = 0.

By definition of Ṽk(Ω), supp v ⊆ Ω, and thus Ṽk(Ω) ⊆ Vk(Ω).
(ii) Let k ∈ N, v ∈ Vk+1(Ω). By Definition 3.4.14 of Vk,

∑
β∈Zs v(β)p(−β) = 0 for all

p ∈ Πk+1. In particular, since Πk ⊆ Πk+1,
∑

β∈Zs v(β)p(−β) = 0 for all p ∈ Πk, which implies
that v ∈ Vk(Ω).

(iii) Let v = ∇̃µ δ( · −β) ∈ `(Ω) with β ∈ Zs, µ ∈ Ns0, |µ| = k+ 2. Since µ = (µ1, . . . , µs) 6= 0,
there exists l ∈ {1, . . . , s} such that µl > 0. By Definition 3.4.1, ∇̃µ δ( · − β) = ∇̃µ−elδ( · − β)−
∇̃µ−elδ( · − β − el), |µ− el| = k+ 1 and supp ∇̃µ−elδ( · − β) ⊆ Ω, supp ∇̃µ−elδ( · − β − el) ⊆ Ω.
Therefore, v ∈ Ṽk(Ω).

The existence of difference subdivision operators S′ translates in the setting of the matrix
approach and becomes the invariance of the spaces Vk(Ω), defined in 3.4.14, under the transition
operator Td ∈ T . Thus, Lemma 3.4.16 can be seen as an analogon of Lemma 3.4.9.

Lemma 3.4.16 ([Cavaretta, Dahmen and Micchelli, 1991, Section 3.5], [Jia, 1998, Theorem 5.2],
[Charina, 2012, Lemma 4.4]). Let k ∈ N0. If S = (a,M) is a subdivision operator whose mask a
satisfies sum rules of order k + 1 and Ω ⊆ Zs such that `(Ω) is T -invariant for all d ∈ D, then
Vn(Ω) is T -invariant for all n ≤ k.
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Proof. Let n ≤ k, k ∈ N, and v ∈ Vn(Ω). If p ∈ Πn and d ∈ D, then, by (3.2.1),∑
α∈Zs

Tdv(α)p(−α) =
∑
β∈Ω

v(β)
∑
α∈Zs

a(Mα− β + d)p(−α) =
∑
β∈Ω

v(β)(Sp)(d− β).

By Lemma 3.4.9 (ii), (Sp)(d − · ) ∈ Πn, and thus
∑

α∈Zs Tdv(α)p(−α) = 0 which implies that
Td,Ωv ∈ Vn(Ω).

We are now ready to formulate the main result of this section,

Theorem 3.4.17. Let k ∈ N0 and S be a finite set of subdivision operators whose masks satisfy
sum rules of order k + 1. If there exists a finite set Ω ⊆ Zs such that

(i) `(Ω) is invariant under the transition operators in T ,

(ii) Vk(Ω) = Ṽk(Ω) and

(iii) Xµ 6= ∅ for all |µ| = k + 1, where Xµ =
{
β ∈ Zs : supp ∇̃µ δ( · − β) ⊆ Ω

}
,

then RSR(S ′|∇k+1 ) = JSR(
{
Td,j,Ω|Vk(Ω) : d ∈ Dj , j = 1, . . . , J

}
).

We give the proof of Theorem 3.4.17 in Section 3.5.

Remark 3.4.18. Example 3.5.5 shows that assumption (ii) and (iii) of Theorem 3.4.17 are
indeed crucial. The natural candidate for the set Ω in Theorem 3.4.17 would be the set ΩC from
Lemma 3.2.9. The set ΩC , by Lemma 3.2.9, satisfies assumption (i) of Theorem 3.4.17 and our
numerical experiments show that in most cases ΩC also satisfies the assumptions (ii) and (iii).
However, Example 3.4.19 illustrates that the case Ṽ0(ΩC) $ V0(ΩC) and Xµ = ∅, for some
µ ∈ Ns0, occurs sometimes even in the stationary setting. In such cases, we choose Ω = ΩV from
Proposition 3.4.21 and study, if necessary, the convergence properties of an iterated subdivision

scheme Sn, n ∈ N, whose dilation matrices Mj satisfy
∣∣∣∣∣∣M−1

j

∣∣∣∣∣∣
∞
< 1.

The structure of ΩV is adapted to the definition of the restricted spectral radius and makes the
link between the two spectral radii more evident. The definition of the set ΩV is straightforward
in comparison to the set ΩC from Lemma 3.2.9. However, the latter is by far more efficient for
numerical computations.

Example 3.4.19. Consider the dilation matrix M =

[
−3 −4

4 4

]
with digit set D =

{[
−m
m

]
:

m = 0, 1, 2, 3

}
and choose any mask a with support supp a =

{[
1
0

]
,

[
2
1

]
,

[
3
1

]
,

[
1
2

]
,

[
0
3

]
,

[
1
4

]
,[

3
4

]}
, for example

a =
1

6


0 0 0 6 0
2 0 6 0 2
0 3 0 0 0
0 3 0 0 2

 ,
which, by [Daubechies and Lagarias, 1992b, Theorem 2.2], corresponds to a convergent sub-
division scheme whose basic limit function has Hölder regularity α ' 0.1200. The set ΩC

constructed by Algorithm 3.2.9 is plotted in Figure 3.9. Straightforward computation shows
that dimV0(ΩC) = 33 > dim Ṽ0(ΩC) = 32. Thus, ΩC is inappropriate for further theoretical

analysis. The problematic point is
[
−2 1

]T
which has no direct neighbour. The dimensions of

the spaces Vk(ΩC) and Ṽk(ΩC), k ∈ {0, . . . , 10}, are also printed in Figure 3.9. 4
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3 Multiple subdivision

k 0 1 2 3 4 5 6 7 8 9 10

dimVk(ΩC) 33 31 28 24 19 15 11 7 4 1 0

dim Ṽk(ΩC) 32 29 22 2 0 0 0 0 0 0 0

Figure 3.9: The set ΩC and the dimensions of the spaces Vk(ΩC) and Ṽk(ΩC) from Exam-
ple 3.4.19.

In Lemma 3.4.20 we introduce a family of finite sets ΩV ⊆ Zs, such that Vk(ΩV ) = Ṽk(ΩV )
for all k ∈ N0.

Lemma 3.4.20. If Ω = ([0, N1]×· · ·× [0, Ns])∩Zs, Nl ∈ N0, l ∈ {1, . . . , s}, then Vk(Ω) = Ṽk(Ω)
for all k ∈ N0.

Proof. The proof is by induction on k. The proof of the induction step is based on [Charina,
2012, Proof of Lemma 4.4].

Let k = 0. The dimension of V0(Ω) is #Ω− 1, due to V0(Ω) being orthogonal to the vector of
all ones. To determine the dimension of Ṽ0(Ω), we consider the graph G = (Ω, E) with the set
of edges

E =
{

(ω1, ω2) ∈ Ω2 : ||ω1 − ω2||1 = 1
}
.

Using this point of view, every sequence of the form ∇l δ( · −β) ∈ Ṽ0(Ω), β ∈ Zs, l ∈ {1, . . . , s}, is
associated uniquely to an edge in E. The graph G is connected, thus, there exists a corresponding
spanning tree consisting of #Ω − 1 edges from E [Diestel, 2005, Theorem 1.5.1]. Since any
spanning tree does not contain cycles, the set of edges of the spanning tree corresponds to a set
of linearly independent sequences in Ṽ0(Ω). Thus, dim Ṽ0(Ω) = #Ω− 1.

Assume the statement holds for all natural numbers less than k, k ≥ 1. We show next that
the statement holds for k. Let v ∈ Vk(Ω), by Lemma 3.4.15, v ∈ Vk−1(Ω). By the induction
hypotheses v ∈ Ṽk−1(Ω), and thus is of the form

v =
∑
µ∈Ns0
|µ|=k

∑
β∈Xµ

vµ(β)∇̃µ δ( · − β), (3.4.3)

where Xµ =
{
β ∈ Zs : supp ∇̃µ δ( · − β) ⊆ Ω

}
= ([0, N1 − µ1]× · · · × [0, Ns − µs])∩Zs, Nl > µl

and vµ(β) ∈ R; if Nl < µl for some l ∈ {1, . . . , s}, then Xµ = ∅. By the definition of Vk(Ω)
and (3.4.3), for all p ∈ Πk,

0 =
∑
α∈Zs

v(α)p(−α) =
∑
α∈Zs

∑
µ∈Ns0
|µ|=k

∑
β∈Xµ

vµ(β)∇̃µ δ(α− β)p(−α) =
∑
µ∈Ns0
|µ|=k

∑
β∈Xµ

vµ(β)∇̃µ p(−β).

If we choose p(α) = αν , |ν| = k, then ∇̃µ p(−β) = 0 whenever ν 6= µ and constant otherwise,
which implies ∑

β∈Xµ

vµ(β) = 0 for all |µ| = k.
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3.4 Unifying the matrix and operator approach

If we identify the sequences vµ with the Laurent polynomials v∗µ(z) =
∑

β∈Xµ vµ(β)zβ, z ∈
Cs \ {0}, we see that all v∗µ vanish at z = (1, . . . , 1) ∈ Cs. Because {1− z1, . . . , 1− zs} is a
Gröbner basis with respect to the lexicographic ordering of monomials (see e.g. [Cox, Little and
O’Shea, 2015],[Sauer, 2002a]), there exist polynomials v∗µ,l such that supp vµ,l ⊆ Xµ,l, Xµ,l =(
[0, N1 − µ1]× · · · [0, Nl − µl − 1]× · · · × [0, Ns − µs]

)
∩ Zs and

v∗µ(z) =
s∑
l=1

(1− zl)v∗µ,l(z) =
s∑
l=1

(∇l vµ,l)∗ (z).

The polynomials v∗µ,l can be computed by polynomial long division for example. Thus, we get

vµ(β) =
s∑
l=1

∑
γ∈Xµ,l

vµ,l(γ)∇l δ(β − γ). (3.4.4)

Therefore, since |µ+ el| = k + 1, l ∈ {1, . . . , s}, (3.4.3) and (3.4.4) yield

v =
∑
µ∈Ns0
|µ|=k

∑
β∈Xµ,l

s∑
l=1

∇l vµ,l(β)∇̃µ δ( · − β) =
∑
µ∈Ns0
|µ|=k

∑
β∈Xµ,l

s∑
l=1

vµ,l(β)∇̃µ+elδ( · − β),

showing that v ∈ Ṽk(Ω).
The inclusion Ṽk(Ω) ⊆ Vk(Ω), k ∈ N0, follows by Lemma 3.4.15 (i).

Proposition 3.4.21. Let S be a finite set of subdivision operators whose dilation matrices Mj,
j ∈ {1, . . . , J}, satisfy ∣∣∣∣∣∣M−1

j

∣∣∣∣∣∣
∞
< 1. (3.4.5)

For the set T of transition operators, there exists a finite set ΩV ⊆ Zs such that

(i) `(ΩV ) is invariant under operators in T ,

(ii) Vk(ΩV ) = Ṽk(ΩV ) for all k ∈ N0 and

(iii) Xµ 6= ∅ for all |µ| = k + 1, where Xµ =
{
β ∈ Zs : supp ∇̃µ δ( · − β) ⊆ Ω

}
.

Proof. By (3.4.5)

CM = max
j∈{1,...,J}

∣∣∣∣∣∣M−1
j

∣∣∣∣∣∣
∞
< 1.

Due to the finite support of the masks and finiteness of the digit sets, we get constants

Ca = max {||α||∞ : α ∈ supp aj , j = 1, . . . , J} <∞ and

CD = max {||d||∞ : d ∈ Dj , j = 1, . . . , J} <∞.

We define

ΩV =

{
x ∈ Rs : ||x||∞ ≤ max

{
Ca + CD
1− CM

, k + 2

}}
∩ Zs.

(i) Let d ∈ Dj , j ∈ {1, . . . , J} and v ∈ `(ΩV ). By (3.2.1), Td,jv(α) 6= 0, whenever α ∈ Zs is
such that Mjα−β+d ∈ supp aj for some β ∈ supp v ⊆ ΩV , or, equivalently, α ∈M−1

j (supp aj−
d+ ΩV ). Thus, we obtain

||α||∞ ≤ CM
(
Ca + CD +

Ca + CD
1− CM

)
=
Ca + CD
1− CM

(CM (1− CM ) + CM ) ≤ Ca + CD
1− CM

,

since −C2
M + 2CM ≤ 1, implying Td,jv ∈ `(ΩV ).

(ii) This follows by 3.4.20.
(iii) Since ΩV contains the set [−k − 2, k + 2]s ∩ Zs, it follows that Xµ 6= ∅.
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3 Multiple subdivision

Remark 3.4.22. The proof of Proposition 3.4.21 explains the phenomenon occurring in Exam-
ple 3.4.19. The graph corresponding to the set ΩC from this example consists of two connected
components. This fact forces dimV0(ΩC) > dim Ṽ0(ΩC).

Remark 3.4.23. The functions constructV and constructVt [Mejstrik, 2018b] construct bases
for the spaces Vk(Ω) and Ṽk(Ω) respectively. The function dimVVt computes the dimensions of
the spaces Vk(Ω) and Ṽk(Ω).

3.5 Proof of Theorem 3.4.17

The proof of Theorem 3.4.17 is split into several lemmata, which altogether show that the
averaged norm of products of the restricted transition matrices, arising Definition 2.1.1 of the
JSR , is equivalent to the restricted norm in (3.4.2).

Lemma 3.5.1 is a generalization of [Charina, 2012, Proposition 4.1]. It shows that, for the
computation of the restricted norms of difference subdivision operators in Definition 3.4.12, the
supremum over all sequences c ∈ `∞(Zs) in (3.4.2) is attained by a finitely supported sequence,
and thus the supremum can be replaced by a maximum, In particular, this can be used for
explicit computation of the restricted norms by means of Linear Programming [Charina, Conti
and Sauer, 2005, Paragraph 4].

Lemma 3.5.1. Let k ∈ N0. If (Sjn)n∈N ∈ SN is a subdivision scheme and (S′jn)n∈N ∈ S ′N is an
associated difference scheme of order k + 1, i.e.

∇k+1 Sj = S′j∇k+1 for all j ∈ {1, . . . , J} ,

then there exists a finite set K ⊆ Zs, depending only on S, such that∣∣∣∣S′jn · · ·S′j1 |∇k+1

∣∣∣∣
∞ = max

c∈`∞(K)

||∇k+1 c||∞=1

max
α∈Mjn ···Mj1

[0,1)s∩Zs

∣∣∣∣∣∣S′jn · · ·S′j1∇k+1 c(α)
∣∣∣∣∣∣
∞
.

Proof. By definition of S′j and (3.4.1),∣∣∣∣S′jn · · ·S′j1 |∇k+1

∣∣∣∣
∞ = sup

c∈`∞(Zs)
||∇k+1 c||∞=1

sup
α∈Zs

∣∣∣∣∣∣S′jn · · ·S′j1∇k+1 c(α)
∣∣∣∣∣∣
∞

= sup
c∈`∞(Zs)
||∇k+1 c||∞=1

sup
α∈Zs

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
β∈Zs

(S′jn · · ·S
′
j1δI)(α−Mjn · · ·Mj1β)∇k+1 c(β)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.

Since there are #(Mjn · · ·Mj1 [0, 1)s ∩ Zs) different subdivision rules at the nth level of the
subdivision recursion, it suffices to take α ∈ Mjn · · ·Mj1 [0, 1)s ∩ Zs. Lemma 3.4.9 (iii) in
particular shows that the supports of the masks a′j , j ∈ {1, . . . , J} of the difference schemes S′j
are finite. By Lemma 3.1.13 (ii), it follows that

α−Mjn· · ·Mj1β ∈ supp(S′jn· · ·S
′
j1δI) ⊆Mjn· · ·Mj2 supp a′j1 +Mjn· · ·Mj3 supp a′j2 +· · ·+supp a′jn ,

and thus, with (supp a′ ∪ {0})j = supp a′j ∪ {0},

β ∈M−1
j1
· · ·M−1

jn

(
α− (Mjn · · ·Mj2 supp a′j1 +Mjn · · ·Mj3 supp a′j2 + · · ·+ supp a′jn)

)
⊆M−1

j1
· · ·M−1

jn

(
(Mjn · · ·Mj1 [0, 1)s ∩ Zs)− (Mjn · · ·Mj2 supp a′j1 +Mjn

′ + · · ·+ supp a′jn)
)

⊆ ([0, 1)s ∩M−1
j1
· · ·M−1

jn
Zs)− (M−1

j1
(supp a′j1 ∪ {0}) + · · ·+M−1

j1
· · ·M−1

jn
(supp a′jn ∪ {0}))

⊆ [0, 1)s −Ksupp a′∪{0}, j ,
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3.5 Proof of Theorem 3.4.17

where we used that 0 ∈ supp a′j ∪ {0} in the last step. Note that, in view of Example 3.4.11,
even if 0 ∈ supp aj for all j ∈ {1, . . . , J}, we cannot assume without loss of generality that
0 ∈ supp a′j , j ∈ {1, . . . , J}. We denote K = [0, 1)s −Ksupp a′∪{0}, j .

Lemma 3.5.2. If µ ∈ Ns0, k ∈ N0, |µ| = k, then

(i)
∣∣∣∣∣∣∇̃µ δ∣∣∣∣∣∣

∞
=
( µ

bµ2 c
)

and

(ii)
∣∣∣∣∇k δ∣∣∣∣∞ =

( k
b k2c
)
,

where the floor function b · c is defined component-wise.

Proof. (i) Let µ ∈ Ns0. Straightforward computation shows that∣∣∣∣∣∣∇̃µ δ∣∣∣∣∣∣
∞

= max
ν≤µ

∣∣∣∣(−1)ν
(
µ

ν

)∣∣∣∣ = max
ν1≤µ1

(
µ1

ν1

)
· · · max

νs≤µs

(
µs
νs

)
=

(
µ1⌊µ1
2

⌋) · · ·( µs⌊µs
2

⌋) =

(
µ⌊µ
2

⌋).
(ii) Let k ∈ N0 and define for µ ∈ Ns0, |µ| = k, the function fk : Ns0 → R by fk(µ) =

( µ

bµ2 c
)
. We

need to determine the maximum of fk. Without loss of generality, due to the definition of the
multivariate binomial coefficient (1.2.1), we can assume that µl ≤

⌊
k
2

⌋
for all l ∈ {1, . . . , s− 1}.

We first prove that fk(µ) > fk(ν) for all µ, ν ∈ Ns0, |µ| = |ν| = k, µl ≤ νl ≤
⌊
k
2

⌋
for l ∈

{1, . . . , s− 1} and ν − µ ∈ 2Ns0. Loosely speaking, fk is coordinate-wise monotone for steps of
length 2 under reasonable assumptions. If we fix all the coordinates except two, the problem
reduces to showing that Xa/Ya < 1 for all a ∈ N0 with 2 ≤ a ≤

⌊
k
2

⌋
, where

Xa =

(
a⌊
a
2

⌋)(k − a⌊
k−a

2

⌋), Ya =

(
a− 2⌊
a−2

2

⌋)(k − a+ 2⌊
k−a+2

2

⌋ ).
Using the definition of the binomial coefficient this becomes

Xa

Ya
=

a!⌊
a
2

⌋
!
(
a−

⌊
a
2

⌋)
!
· (k − a)!⌊

k−a
2

⌋
!
(
k − a−

⌊
k−a

2

⌋)
!

(a− 2)!⌊
a−2

2

⌋
!
(
a− 2−

⌊
a−2

2

⌋)
!
· (k − a+ 2)!⌊

k−a+2
2

⌋
!
(
k − a+ 2−

⌊
k−a+2

2

⌋)
!

=
a(a− 1)

⌊
2+k−a

2

⌋ ⌊
3+k−a

2

⌋⌊
a
2

⌋ ⌊
a+1

2

⌋
(k − a+ 1)(k − a+ 2)

=
4(a− 1)

⌊
k−a+2

2

⌋ ⌊
k−a+3

2

⌋
a(k − a+ 2)(k − a+ 1)

for even and odd k

=
(k − a+ 2)(a− 1)

a(k − a+ 1)
for even and odd a.

The last term is less then 1 for 2 ≤ a ≤
⌊
k
2

⌋
. Indeed,

(k − a+ 2)(a− 1)

a(k − a+ 1)
− 1

is continuous in a, has no poles and zeros on 1 ≤ a ≤ k/2 and is negative at a = 1. Now the
proof is complete by noting that(

1⌊
1
2

⌋)(k − 1⌊
k−1

2

⌋) ≤ ( k⌊
k
2

⌋), k ∈ N.
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3 Multiple subdivision

Lemma 3.5.3 is a direct generalization of [Charina, 2012, Lemma 4.5]. It connects the compu-
tation of the norms of transition matrices, defined in 3.2.6, with the computation of the norms
of subdivision operators applied to the δ-sequence.

Lemma 3.5.3. Let k ∈ N0 and S be a finite set of subdivision operators whose masks satisfy
sum rules of order k + 1. If there exists a finite set Ω ⊆ Zs such that

(i) `(Ω) is invariant under the transition operators in T ,

(ii) Vk(Ω) = Ṽk(Ω) and

(iii) Xµ 6= ∅ for all |µ| = k + 1, where

Xµ =
{
β ∈ Zs : supp ∇̃µ δ( · − β) ⊆ Ω

}
, (3.5.1)

then for all j ∈ {1, . . . , J}(
k + 1⌊
k+1

2

⌋)−1 ∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
≤ max

d∈Dj

∣∣∣∣Td,j,Ω|Vk−1(Ω)

∣∣∣∣
∞ ≤

∣∣∣∣V+
∣∣∣∣
∞

(
s+ k

s− 1

)
#Ω

∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
,

where V+ is a matrix defined by (3.5.3) and depending only on Ω and k.

Proof. First, we show the right inequality. Let k ∈ N0 and v ∈ Vk(Ω). We view v as a vector
in R#Ω. By Definition 3.4.14 of Ṽk(Ω) and assumption (ii), there exist vµ,β ∈ R, with µ ∈ Ns0,
|µ| = k + 1, β ∈ Xµ, such that

v =
∑
µ∈Ns0
|µ|=k+1

∑
β∈Xµ

vµ,β∇̃µ δ( · − β). (3.5.2)

If we define V as the matrix whose columns are the finite sequences ∇̃µ δ( · − β), β ∈ Xµ,
µ ∈ Ns0, |µ| = k + 1, then we can compute a vector ṽ, whose entries are numbers vµ,β, µ ∈ Ns0,
|µ| = k + 1, β ∈ Xµ, such that (3.5.2) holds, by

ṽ = V+v, (3.5.3)

where V+ is a pseudo-inverse of V. It follows that we can bound the modulus of the numbers
vµ,β by

max
µ∈Ns0
|µ|=k+1

max
β∈Xµ

|vµ,β| = ||ṽ||∞ =
∣∣∣∣V+v

∣∣∣∣
∞ ≤

∣∣∣∣V+
∣∣∣∣
∞ · ||v||∞ , v ∈ Vk(Ω). (3.5.4)

With Td = Td,j,Ω for some d ∈ Dj , j ∈ {1, . . . , J}, using that #Xµ ≤ #Ω and (3.5.4),

∣∣∣∣Td|Vk(Ω)

∣∣∣∣
∞ = max

v∈Vk(Ω)
||v||∞=1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Td

∑
µ∈Ns0
|µ|=k+1

∑
β∈Xµ

vµ,β(∇̃µ δ)( · − β)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∞

≤ max
v∈Vk(Ω)
||v||∞=1

||ṽ||∞
∑
µ∈Ns0
|µ|=k+1

∑
β∈Xµ

∣∣∣∣∣∣Td(∇̃µ δ)( · − β)
∣∣∣∣∣∣
∞

≤
∣∣∣∣V+

∣∣∣∣
∞

(
s+ k

s− 1

)
#Ω max

µ∈Ns0
|µ|=k+1

max
β∈Xµ

∣∣∣∣∣∣Td(∇̃µ δ)( · − β)
∣∣∣∣∣∣
∞
.

(3.5.5)
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3.5 Proof of Theorem 3.4.17

By the definition of Td, we get for β ∈ Xµ, |µ| = k + 1,

∣∣∣∣∣∣(Td∇̃µ δ)( · − β)
∣∣∣∣∣∣
∞

= max
α∈Ω

∣∣∣∣∣∣
∑
γ∈Ω

aj(Mjα− γ + d)∇̃µ δ(γ − β)

∣∣∣∣∣∣
∞

. (3.5.6)

The value of (3.5.6) does not change if we replace α ∈ Ω by α ∈ Zs, due to assumption (i). The
value of (3.5.6) also does not change if we take γ ∈ Zs, since supp ∇̃µ δ( · − β) ⊆ Ω. Thus, for
β ∈ Xµ,

∣∣∣∣∣∣Td∇̃µ δ( · − β)
∣∣∣∣∣∣
∞

= max
α∈Zs

∣∣∣∣∣∣
∑
γ∈Zs

aj(Mjα− γ + d)∇̃µ δ(γ − β)

∣∣∣∣∣∣
=
∣∣∣∣∣∣(∇̃µ aj)(Mj · + d− β)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣(∇̃µ Sδ)(M · + d− β)

∣∣∣∣∣∣
∞
.

(3.5.7)

Now, with C1 = ||V+||∞
(
s+k
s−1

)
#Ω, using the fact that Dj is a digit set of Mj and combin-

ing (3.5.5) and (3.5.7) we obtain the first estimate

max
d∈Dj

∣∣∣∣Td|Vk(Ω)

∣∣∣∣
∞ ≤ C1 max

d∈Dj
max
µ∈Ns0
|µ|=k+1

max
β∈Xµ

∣∣∣∣∣∣Td∇̃µ δ( · − β)
∣∣∣∣∣∣
∞

= C1 max
d∈Dj

max
µ∈Ns0
|µ|=k+1

max
β∈Xµ

∣∣∣∣∣∣(∇̃µ Sjδ)(Mj · + d− β)
∣∣∣∣∣∣
∞

= C1 max
µ∈Ns0
|µ|=k+1

∣∣∣∣∣∣∇̃µ Sjδ∣∣∣∣∣∣
∞

= C1

∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
.

To show the reverse inequality, take µ ∈ Ns0, |µ| = k + 1 and β ∈ Xµ.Note that β exists, due
to assumption (iii). Thus, by Lemma 3.5.2,

||Td|Vk ||∞ = max
v∈Vk(Ω)
v 6=0

||Tdv||∞
||v||∞

≥

∣∣∣∣∣∣Td∇̃µ δ( · − β)
∣∣∣∣∣∣
∞∣∣∣∣∣∣∇̃µ δ( · − β)

∣∣∣∣∣∣
∞

≥
(
k + 1⌊
k+1

2

⌋)−1 ∣∣∣∣∣∣Td∇̃µ δ( · − β)
∣∣∣∣∣∣
∞
.

Taking the maximum over d ∈ Dj and using (3.5.7) we obtain

max
d∈Dj

||Td|Vk ||∞ ≥
(
k + 1⌊
k+1

2

⌋)−1

max
d∈Dj

max
µ∈Ns0
|µ|=k+1

∣∣∣∣∣∣(∇̃µ Sjδ)(Mj · + d− β)
∣∣∣∣∣∣
∞

=

(
k + 1⌊
k+1

2

⌋)−1 ∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
.
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3 Multiple subdivision

Lemma 3.5.4 is a direct generalization of [Charina, 2012, Proposition 4.6]. It connects
Lemma 3.5.1 with Lemma 3.5.3.

Lemma 3.5.4. Let k ∈ N0. If S is a finite set of subdivision operators whose masks satisfy
sum rules of order k+1 and S ′ is a set of corresponding difference subdivision operators of order
k+ 1, then for all j ∈ {1, . . . , J}, there exists K ⊆ Zs finite and depending only on S, such that

∣∣∣∣W+
∣∣∣∣
∞#K

∣∣∣∣S′j |∇k+1

∣∣∣∣
∞ ≤

∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
≤
(
k + 1⌊
k+1

2

⌋) ∣∣∣∣S′j |∇k+1

∣∣∣∣
∞ ,

where W+ is a matrix defined by (3.5.8) and depending only on K and k.

Proof. We show the right inequality first. By Lemma 3.5.2 (ii), we have
∣∣∣∣∇k+1 δ

∣∣∣∣
∞ =

( k+1

b k+1
2 c
)
,

and thus

sup
c∈`∞(Zs)
||∇k+1 c||∞=1

∣∣∣∣∣∣S′j∇k+1 c
∣∣∣∣∣∣
∞

= sup
c∈`∞(Zs)
||∇k+1 c||=1

∣∣∣∣∣∣∇k+1 Sjc
∣∣∣∣∣∣
∞
≥
(
k + 1⌊
k+1

2

⌋)−1 ∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
.

For the other inequality, by Lemma 3.5.1, there exists a finite set K ⊆ Zs, only depending on
S, and a maximizing sequence c̃ ∈ `∞(K),

∣∣∣∣∇k+1 c̃
∣∣∣∣
∞ = 1 such that∣∣∣∣S′j |∇k+1

∣∣∣∣
∞ = max

α∈Mj [0,1)s∩Zs

∣∣∣∣∣∣S′j∇k+1 c̃(α)
∣∣∣∣∣∣
∞
.

We view c̃ as a vector in RK and ∇k+1 c̃ as vector in R(s+ks−1) × RK+{0,...,k+1}s . Let W be the
restriction of the (k + 1)st backwards difference operator ∇k+1 to finite vectors, precisely,

W( · |RK ) = (∇k+1 · )|
R(s+ks−1)×RK+{0,...,k+1}s

. (3.5.8)

Thus, ||W c̃||∞ =
∣∣∣∣∇k+1 c̃

∣∣∣∣
∞ = 1 and we can bound ||c̃||∞ by∣∣∣∣c̃∣∣∣∣∞ =
∣∣∣∣W+W c̃

∣∣∣∣
∞ ≤

∣∣∣∣W+
∣∣∣∣
∞
∣∣∣∣W c̃

∣∣∣∣
∞ ≤

∣∣∣∣W+
∣∣∣∣
∞ . (3.5.9)

Therefore, ∣∣∣∣S′j |∇k+1

∣∣∣∣
∞ = max

α∈
(
Mj [0,1)s

)
∩Zs

∣∣∣∣∣∣
∣∣∣∣∣∣S′j

∑
β∈K
∇k+1 δ(α− β)c̃(β)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤
∣∣∣∣W+

∣∣∣∣
∞ max
α∈
(
Mj [0,1)s

)
∩Zs

∑
β∈K

∣∣∣∣∣∣S′j∇k+1 δ(α− β)
∣∣∣∣∣∣
∞

≤
∣∣∣∣W+

∣∣∣∣
∞#K max

α∈
(
Mj [0,1)s−K

)
∩Zs

∣∣∣∣∣∣S′j∇k+1 δ(α)
∣∣∣∣∣∣
∞

≤
∣∣∣∣W+

∣∣∣∣
∞#K

∣∣∣∣∣∣∇k+1 Sjδ
∣∣∣∣∣∣
∞
.

Now, the proof of the main theorem 3.4.17 just consists of combining these three lemmata.

Proof of Theorem 3.4.17. By Definition 3.4.12 of the RSR and Definition 2.1.1 of the JSR, we
have to show that there exist constants C1, C2 > 0 such that for all n ∈ N

C1 sup
S′j∈S′

∣∣∣∣S′jn · · ·S′j1 |∇k+1

∣∣∣∣ ≤ max
Tj∈T

∣∣∣∣Tjn · · ·Tj1 |Vk(Ω)

∣∣∣∣
∞ ≤ C2 sup

S′j∈S′

∣∣∣∣S′jn · · ·S′j1 |∇k+1

∣∣∣∣ .
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3.5 Proof of Theorem 3.4.17

The constants, by Lemma 3.5.3 and 3.5.4, are

C1 =

(
k + 1⌊
k+1

2

⌋)−1 ∣∣∣∣W+
∣∣∣∣
∞#K and

C2 =
∣∣∣∣V+

∣∣∣∣
∞

(
s+ k

s− 1

)
#Ω

(
k + 1⌊
k+1

2

⌋),
where K ⊆ Zs is a finite set depending only on S and V+ and W+ are matrices only depending
on S and k and defined in (3.5.3) and (3.5.8), respectively,

Example 3.5.5 shows that already in the univariate, stationary case the assumptions Vk(Ω) =
Ṽk(Ω) and Xµ 6= ∅ for all |µ| = k + 1, in Theorem 3.4.17 are crucial.

Example 3.5.5. We consider the stationary subdivision scheme with the dilation matrix M = 2
and the mask

a =
1

2

[
1 0 0 2 0 0 1

]T
.

This subdivision scheme does not converge, as we will prove later, although there is a continu-
ous, piecewise linear, compactly supported on [0, 6], solution φ of the corresponding refinement
equation

φ(x) =
1

2
φ(2x) + φ(2x− 3) +

1

2
φ(2x− 6). (3.5.10)

Indeed, the function

φ(x) =


x/3 if x ∈ [0, 3],

2− x/3 if x ∈ [3, 6] and

0 otherwise

solves (3.5.10). We show next that the subdivision scheme is not convergent.
For illustration purposes, we choose the digit set D = {0, 3}. Algorithm 3.2.9 generates the

set ΩC = {0, 3} and, by Definition 3.4.14, dimV0(ΩC) = 2 > dim Ṽ0(ΩC) = 0. Furthermore,
X(1) = ∅. Thus, ΩC fails to fulfil the assumptions 3.4.17 (ii) and (iii). The set Ω0(V ), with

the properties dimV0(ΩV ) = dim Ṽ0(ΩV ) and X(1) 6= ∅. can be chosen, in this case, to be
ΩV = {−2, . . . , 5}. We make this choice for simplicity reasons, the set ΩV from Proposition 3.4.21
would be of size 18. For Ω′ = ΩV \ΩC = {−2,−1, 1, 2, 4, 5}, the corresponding transition matrices
Td,ΩV , d ∈ D, have the following block form

T0,ΩV =
1

2

[
T0,ΩC 0

0 T0,Ω′

]
and T3,ΩV =

1

2

[
T3,ΩC 0

0 T3,Ω′

]
,

with

T0,ΩC =
1

2

[
1 0

1 2

]
, T3,ΩC =

1

2

[
2 1
0 1

]
,

and

T0,Ω′ =
1

2



0 0 0 0 0 0

1 0 0 0 0 0

0 2 0 1 0 0

1 0 2 0 1 0

0 0 0 1 0 2
0 0 0 0 1 0

 , T3,Ω′ =
1

2



0 1 0 0 0 0

2 0 1 0 0 0

1 0 2 0 1 0

0 0 1 0 2 0

0 0 0 0 0 1
0 0 0 0 0 0

 .

By Lemma 3.2.8 (ii), the space `(ΩV ) is T invariant. Thus, by Theorems 3.4.13 and 3.4.17, due
to dimV0(ΩV ) = dim Ṽ0(ΩV ), X(1) 6= ∅ and JSR(

{
Td,ΩV |V0(ΩV ) : d ∈ D

}
) = 1, we get the correct
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3 Multiple subdivision

answer that the scheme is not convergent. On the contrary, JSR(
{
Td,ΩC |V0(ΩC) : d ∈ D

}
) = 1

2
is misleading. Here, we used the modified invariant polytope algorithm from Chapter 4 for our
computations. 4

Example 3.5.6. We present a full working example for Matlab how to check the convergence
properties of a multiple subdivision scheme. We consider again the bivariate multiple scheme
defined in Example 3.2.4.

We first define the masks a1=1/3*[1 2 3 2 1], a2=a1, the dilation matrices M1=[1 1;1 -2],
M2=[2 -1;1 -2] the subdivision operators S1=getS({a, M1}), S2=getS({a, M2}), and the
set S=[S1; S2]. The function getS computes the digit sets D1 =

{[
0
0

]
,
[

1
−1

]
,
[

1
0

]}
and

D2 =
{[

0
−1

]
,
[

0
0

]
,
[

1
0

]}
which we can view with D1=S1{3} and D2=S2{3}. The command

tjsr({M1^(-1),M2^(-1)}) checks that the dilation matrices are indeed jointly expanding,
since the returned value is less than one. The function tjsr [Mejstrik, 2018b] computes the
joint spectral radius of a finite set of matrices. It is our implementation of the modified in-
variant polytope algorithm; described in detail in Chapter 4. Next we construct the set ΩC

and the transition matrices by [T,OmC]=transitionmatrix(S) and the spaces V0(ΩC) and
Ṽ0(ΩC). To check that these spaces are equal we call dimVVt(OmC) and infer that dimV0(ΩC) =
dim Ṽ0(ΩC) = 39. We check by hand that X(1,0) and X(0,1) are non-empty. Next we construct
the space V0(ΩC) and restrict the transition matrices to this space by V0=constructV(OmC,0)

and TV0=restrictmatrix(T,V0). Finally we compute the joint spectral radius of the restricted
transition matrices Td,j,Ω|V0(ΩC), j = 1, 2, d ∈ Dj , by tjsr(TV0,'maxsmpdepth',2). The option
’maxsmpdepth’,2 is useful in this case and its effect is described in the manual [Mejstrik, 2018b].
Without this option the function runs much slower, but still returns

JSR
({
Td,j,ΩC |V0(ΩC) : j = 1, 2, d ∈ Dj

})
= ρ

(
T[ 1

0 ],1,ΩC
T[ 0
−1

]
,2,ΩC
|V0(ΩC)

)1/2

=

√
1 +
√

2

3
' 0.89707.

Therefore, SN is convergent. For convenience of the reader, the raw source code is given in
Figure 3.10. 4

a1 = 1/3*[ 1 2 3 2 1 ]; a2 = a1;

M1 = [ 1 1; 1 -2 ];

M2 = [ 2 -1; 1 -2 ];

S1 = getS( { a1, M1 } )

S2 = getS( { a2, M2 } )

S = [ S1; S2 ]

tjsr( {S1{2}^-1, S2{2}^-1} )

[ T, OmC ] = transitionmatrix(S)

dimVVt( OmC )

V0 = constructV( OmC, 0 )

TV0 = restrictmatrix( T, V0 )

tjsr( TV0, 'maxsmpdepth',2 )

Figure 3.10: Listing for Example 3.5.6.
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3.6 Appendix

3.6 Appendix for Chapter 3

Algorithm 3.6.1. Simple implementation of the invariant Omega algorithm 3.2.9 in Matlab.

function [ Om ] = constructOmega( S, Om )

% S: cell array of subdivision schemes. Each row consists of a, M and D.

% Om: (Optional) the starting set

% Ex: a=1/3*[1 2 3 2 1]; M1=[2 -1;1 -2]; M2=[1 1;1 -2]; D=[0 1 2;0 0 0];

% constructOmega({a, M1, D; a, M2, D})

a=S(:,1); M=S(:,2); D=S(:,3); %extract the sets a, M and D

J=numel(a); %number of subdivision operators

dim=size(M{1},1); %the dimension

if(nargin==1); Om=zeros(dim,1); end %if Omega is not given, set it to zero

while(true)

sizebefore=size(Om,2); %used to check if elements were added

for j=1:J %iterate through all subdiv. operators

OmN=M{j}\setplus(supp(a{j},dim),Om,-D{j});

%compute new possible entries

OmN=round(OmN(:,sum(abs(OmN-round(OmN)),1)<.5/abs(det(M{j}))));

%round to integers

Om=unique([Om OmN]','rows')'; %remove duplicates

end

if(size(Om,2)==sizebefore); break; end

%if no elements were added, terminate

end

function [ X ] = setplus( varargin )

% setplus(A,B) = { x=a+b : a in A, b in B},

% Note: The function operates column wise

% Ex: setplus([1 2; 1 0],[0 -1;-1 -1]); %Output: [0 1 1 2;0 -1 0 -1]

sze=size(varargin,2); %number of sets

X=varargin{sze}; %the output set

for j=sze-1:-1:1 %iterate through all sets

A=varargin{j}; %the set to be added

X=repmat(A,1,size(X,2))+reshape(repmat(X,size(A,2),1),size(A,1),[]);

%add the set

X=unique(X','rows')'; %remove duplicates

end

function [ L ] = supp( a, dim )

% Returns the support of an array.

% The first entry is assumed to have index (0,0,...,0)

% Ex: supp([1 1;0 1],2) %Output: [0 0 1;0 1 1];

L=zeros(dim,nnz(a)); %output variable

CO=cell(1,dim); %dummy-variable

k=1; %index-variable for D

for j=1:numel(a) %iterate through all elements of the masks

if(a(j)~=0) %if the element is nonzero, save the indices

[CO{:}]=ind2sub(size(a),j); %get the indices

L(:,k)=[CO{:}]'-1; %add converted cell to vector

k=k+1; %increase counter

end

end
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3 Multiple subdivision

Proof of Example 3.1.5. For the subdivision operator S1 = (a1,M1), with the mask a1 =
1
4

[
−1 −2 2 6 3

]T
, the dilation matrix M1 = 2 and the digit set D = {0, 1}, the space

`(Ω) with Ω = {0, 1, 2, 3} is T invariant. By [Daubechies and Lagarias, 1992b, Theorem 2.2],
the Hölder regularity α of the basic limit function of the corresponding subdivision scheme is
given by the JSR of the transition matrices restricted to the space V0(Ω) and computes to

α = − log2 JSR

1

4

−4 −3 −2
3 −1 −5
0 3 6

 , 1

4

−4 −8 −7
3 6 2
0 0 3


 = − log2

3

4
' 0.4150.

For the subdivision operator S2 = (a2,M2), with the mask a1 = 1
4

[
3 2 2 2 −1

]T
, the

dilation matrix M1 = 2 and digit set D = {0, 1}, the space `(Ω), with Ω = {0, 1, 2, 3}, is T
invariant. As above, the Hölder regularity α of the basic limit function is

α = − log2 JSR

1

4

 0 0 1
−1 2 2

0 0 −1

 , 1

4

 0 1 −2
3 3 3
0 −1 2


 = − log2

3

4
' 0.4150.

For the multiple subdivision scheme S = {S1, S2}, the joint spectral radius of the restricted
transition matrices computes to 5

4 . Therefore, SN is not convergent.
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4 Joint spectral radius

Ah ha.

(V. Yu. Protasov)

Albeit the characterization of the convergence of subdivision schemes in terms of the joint
spectral radius is elegant, the numerical computation of the joint spectral radius still causes
big problems. In several papers, Guglielmi and Protasov [2013, 2016] made a breakthrough
in the problem of the joint spectral radius computation, developing the invariant polytope al-
gorithm which for a large class of matrices finds the exact value of the joint spectral radius.
This algorithm found many applications in (seemingly unrelated) mathematical applications,
for example for computing the regularity of wavelets and subdivision schemes [Daubechies and
Lagarias, 1992b], the capacity of codes [Moision, Orlitsky and Siegel, 2001], the stability of linear
switched systems [Gurvits, 1995] or in connection with the Euler partition function [Protasov,
2000].

In Section 4.3 we introduce the modified Gripenberg algorithm. This is a new, fast algo-
rithm for computing good lower bounds for the joint spectral radius. The modified Gripenberg
algorithm finds in most cases the exact value of the joint spectral radius in less than 5 seconds.

In Section 4.4 we propose a modification of the invariant polytope algorithm, parallelising it,
making it roughly three times faster and suitable for higher dimensions. Furthermore, in cases
where the modified invariant polytope algorithm fails to find the exact value of the JSR, the
modified invariant polytope algorithm can return upper bounds for the JSR which are proven to
be correct. The original invariant polytope algorithm may return wrong bounds. The modified
version works for most matrix families of dimensions up to 25 (compared to 20 for the original
algorithm); for non-negative matrices the dimension is up to three thousand (compared to one
thousand for the original algorithm).

Corresponding examples and statistics of numerical results are provided in Section 4.5.

4.1 Definitions and properties

We begin this chapter by recalling the definition of the joint spectral radius (JSR). Given a
finite set of matrices A = {Aj ∈ Rs×s : j = 1, . . . , J}, J ∈ N, its JSR is defined by

JSR(A) = lim
n→∞

max
Aj∈A

||Ajn · · ·Aj1 ||
1/n . (4.1.1)

The JSR of a finite set of matrices is a quantity which describes the maximal asymptotic growth
rate of the norms of products of matrices from this set (with repetitions permitted). If the set
A consists of only one matrix, the JSR reduces to the classical spectral radius ρ of a matrix.
Given A ∈ Rs×s, by Gelfand’s formula,

ρ(A) = lim
n→∞

||An||1/n , (4.1.2)

which makes the connection between the spectral radius and the joint spectral radius immedi-
ately clear. Before we go on, we prove that the JSR exists.
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4 Joint spectral radius

Lemma 4.1.1. If A = {Aj ∈ Rs×s : j = 1, . . . , J} is a finite set of matrices, then

(i) JSR(A) exists and is equal to infn∈N maxAj∈A ||Ajn · · ·Aj1 ||
1/n and

(ii) JSR(A) = inf || · ||maxAj∈A ||Aj ||.

The proof for this Lemma is taken from [Jungers, 2009, Proposition 1.2 and Proposition 1.4].

Proof. First note that, due to the equivalence of norms in Rs, the definition of the JSR in (4.1.1)
does not depend on the norm.

(i) Let || · || be a sub-multiplicative norm and for n ∈ N let rn = maxAj∈A ||Ajn · · ·Aj1 ||.
It follows that (rn)n∈N is a sub-multiplicative sequence, i.e. rm+n ≤ rmrn, and rn > 0 for all
m,n ∈ N (When rn = 0 for any n ∈ N, the proof is trivial). Therefore, by Fekete’s Lemma

limn→∞ r
1/n
n = infn∈N r

1/n
n , which proves the claim.

(ii) Let ε > 0 and define Ã =
{

(JSR(A) + ε)−1Aj : Aj ∈ A
}

. By (4.1.1), the norms of all

products of the form Ãjn · · · Ãj1 , Ãj ∈ Ã, are uniformly bounded. Thus, we can define a vector

norm || · ||ε : Rs → R, ||x||ε = max
{
‖x‖2, ‖Ãjn · · · Ãj1x‖2 : Ãj ∈ Ã, n ∈ N

}
. The matrix norm

induced by this vector norm fulfils ‖Ãj‖ε ≤ 1 for all Ãj ∈ Ã. Indeed, for Ãj ∈ Ã,∣∣∣∣∣∣Ãj∣∣∣∣∣∣
ε

= max
||x||ε=1

∣∣∣∣∣∣Ãjx∣∣∣∣∣∣
ε

= max
||x||ε=1

max
{∣∣∣∣∣∣Ãx∣∣∣∣∣∣

2
,
∣∣∣∣∣∣Ãjn · · · Ãj1Ãx∣∣∣∣∣∣

2
: Ãj ∈ Ã, n ∈ N

}
≤ max
||x||ε=1

||x||ε = 1.

Therefore, ||Aj ||ε ≤ JSR(A) + ε for all Aj ∈ A.

For completeness, we give a self contained proof of Fekete’s Lemma in Section 4.6.
The computation of the JSR is a notoriously hard problem. Even for non-negative matrices

with rational coefficients this problem is NP-hard [Blondel and Tsitsiklis, 1997]. Moreover, the
question whether or not JSR(A) ≤ 1 for a given set A is algorithmically undecidable [Blondel
and Tsitsiklis, 2000]. Berger and Wang [1992] proved that the JSR can be computed using the
spectral radii of the matrix products. If A = {Aj ∈ Rs×s : j = 1, . . . , J}, then

JSR(A) = lim sup
n→∞
Aj∈A

ρ(Ajn · · ·Aj1)1/n. (4.1.3)

Most algorithms which try to compute or to approximate the JSR make use of the following
inequality.

Theorem 4.1.2 ([Daubechies and Lagarias, 1992a, Lemma 3.1]). If A = {Aj ∈ Rs×s : j =
1, . . . , J} and || · || is a sub-multiplicative norm, then

max
Aj∈A

ρ (Ajk · · ·Aj1)1/k ≤ JSR(A) ≤ max
Aj∈A

||Ajk · · ·Aj1 ||
1/k , k ∈ N. (4.1.4)

Proof. Let || · || be any sub-multiplicative norm and k ∈ N. We first prove the left inequality
in (4.1.4). By (4.1.2), we get for all m ∈ N,

ρ(Ajk · · ·Aj1)1/k = ρ((Ajk · · ·Aj1)m)1/km ≤ ||(Ajk · · ·Aj1)m||1/km ≤ max
Aj∈A

||Ajkm · · ·Aj1 ||
1/km

≤ lim
m→∞

max
Akm∈A

||Ajkm · · ·Aj1 ||
1/km = JSR(A).

The right inequality follows directly from Fekete’s Lemma 4.6.3. Indeed, for k ∈ N,

JSR(A) = lim
n→∞

max
Aj∈A

||Ajn · · ·Aj1 ||
1/n = inf

n∈N
max
Aj∈A

||Ajn · · ·Aj1 || ≥ max
Aj∈A

||Ajk · · ·Aj1 ||
1/k .
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4.1 Definitions and properties

In general, one cannot deduce upper bounds of the JSR from the spectral radii of the individual
matrices.

Example 4.1.3. For N ∈ N, the two matrices A1 =

[
0 N
0 0

]
and A2 =

[
0 0
N 0

]
both have

spectral radius zero, ρ(A1) = ρ(A2) = 0, while Theorem 4.1.2 implies that JSR({A1, A2}) ≥
ρ(A1A2)1/2 = N . 4

Using Theorem 4.1.2 it is easy to show that the JSR of the matrices in Example 4.1.3 equals
N . Thus, the JSR of these matrices is attained by the spectral radius of a finite product of these
matrices. This brings us to the concept of spectral maximizing products.

Definition 4.1.4. Let A = {Aj ∈ Rs×s : j = 1, . . . , J}. For the product Π1 = Ajk · · ·Aj1 ,
Aj ∈ A, k ∈ N,

(i) we denote the length k of the product by l(Π1), or shortly by l(1) and

(ii) we call the number ρ(Π1)1/l(1) = ρ(Ajk · · ·Aj1)1/k the products averaged spectral radius
and

(iii) we call the number ||Π1||1/l(1) = ||Ajk · · ·Aj1 ||
1/k the products averaged norm.

Definition 4.1.5. Let A = {Aj ∈ Rs×s : j = 1, . . . , J}. A spectral maximizing product (s.m.p.)
is any matrix product of matrices in A whose averaged spectral radius equals the joint spectral
radius of A.

Example 4.1.6. Let A = {A1, A2} with A1 =

[
1 1
0 1

]
, A2 =

[
1 0
1 1

]
. Computing the averaged

spectral radii and norms of products of matrices of length one and two from the set A, we get

ρ(A1)1/1 = 1, ||A1||1/12 =

√
5 + 1

2
,

ρ(A1A2)1/2 =

√
5 + 1

2
, ||A1A2||1/22 =

√
5 + 1

2
,

∣∣∣∣A2
1

∣∣∣∣1/2
2

=

√
1 +
√

2.

Note that, due to the symmetry of the matrices A1 and A2, we do not need to compute all

possible products. By Theorem 4.1.2, JSR(A) =
√

5+1
2 and A1A2 is an s.m.p..

In general, the averaged norms do not attain the value of the JSR. For example, for the
∞-norm we get for all products of length less or equal than four,

||A1||1/1∞ = 2,

||A1A1||1/2∞ = 31/2, ||A1A2||1/2∞ = 31/2,

||A1A1A1||1/3∞ = 41/3, ||A1A1A2||1/3∞ = 51/3,

||A1A1A1A1||1/4∞ = 51/4, ||A1A1A1A2||1/4∞ = 71/4, ||A1A2A1A2||1/4∞ = 81/4,

||A1A1A2A2||1/4∞ = 71/4.

The maximum over all averaged ∞-norms of length k ∈ {1, . . . , 50} is plotted in Figure 4.1.
4

Bousch and Mairesse [2002] proofed that not all sets of matrices posses an s.m.p.. Hare,
Morris, Sidorov and Theys [2011] gave the first explicit counterexample of a set which does not
posses an s.m.p.. This means that there exist sets of matrices such that the averaged spectral
radius of every finite product is strictly less than the JSR.
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4 Joint spectral radius

Figure 4.1: Maximum of averaged norms of products of length k ∈ N for the matrices defined in

Example 4.1.6. JSR =
√

5+1
2 ' 1.6180.

Example 4.1.7 ([Hare, Morris, Sidorov and Theys, 2011]). Let A =

[
1 1
0 1

]
and B = α ·

[
1 0
1 1

]
with

α = 0.749326546330367557943961948091344672091327370236064317358024 . . . .

The set {A,B} does not possess an s.m.p.. It is unknown whether α is rational or irrational.
4

It is an open question whether pairs of binary matrices always posses an s.m.p. [Blondel and
Jungers, 2008].

There are three common strategies to exploit (4.1.4);

(i) compute all products up to a length k ∈ N [Gripenberg, 1996; Moision, Orlitsky and Siegel,
2001; Möller and Reif, 2014];

(ii) take a suitable family of norms and minimize the right hand side of (4.1.4) with respect
to this family [Blondel, Nesterov and Theys, 2005; Parrilo and Jadbabaie, 2008; Blondel,
Jungers and Protasov, 2010; Ahmadi, Jungers, Parrilo and Roozbehani, 2011];

(iii) construct a norm which gives tight estimates in (4.1.4) for short products, preferably for
products of length 1 [Guglielmi and Zennaro, 2008; Kozyakin, 2010a,b; Guglielmi and
Protasov, 2013, 2016].

Blondel and Chang [2013] wrote a survey about the JSR computation, including most of
the aforementioned algorithms and compared their performance to each other. The reader is
referred to this work, if she aims for more informations. Here, we only mention a few algorithms.
The Gripenberg algorithm [Gripenberg, 1996] was one of the first algorithms which gave good
estimates for the JSR for a large number of matrix families in reasonable time. It works well up
to a relative accuracy of 95%. It will be discussed in more detail in Section 4.3. The algorithms
by Parrilo and Jadbabaie [2008] and Ahmadi, Jungers, Parrilo and Roozbehani [2011] construct
unit balls which are the level sets of strictly positive, homogeneous, polynomials of even degree.
These algorithms are mostly very fast up to a relative accuracy of 99%. All of these algorithms
only approximate the JSR and so far, to the authors knowledge, there exist only two algorithms
which can compute the exact value of the JSR for a large class of matrices: the tree-based
branch and bound approach by Möller and Reif [2014] and the invariant polytope algorithm by
Guglielmi and Protasov [2013, 2016]. In this paper we concentrate on the invariant polytope
algorithm, and thus follow strategy (iii).
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4.2 Invariant polytope algorithm

In this section we present the concepts used for the invariant polytope algorithm [Guglielmi and
Protasov, 2013, 2016]. We also present the invariant polytope algorithm in 4.2.14. As already
mentioned, the main idea is the construction of a suitable norm.

Definition 4.2.1. Let A = {Aj ∈ Rs×s : j = 1, . . . , J}. An extremal norm (for A) is any norm
|| · || which satisfies

||Ajx|| ≤ JSR(A) · ||x|| for all x ∈ Rs, Aj ∈ A.

We next discuss the existence of extremal norms.

Definition 4.2.2. Let A = {Aj ∈ Rs×s : j = 1, . . . , J}. A is called irreducible if the matrices
A ∈ A do not posses any non-trivial common invariant subspace.

A set {Aj ∈ Rs×s : j = 1, . . . , J} is irreducible if and only if there exists an invertible matrix
B such that B−1AjB has block upper triangular form for all j ∈ {1, . . . , J} [Jungers, 2009,
Section 2.1.1].

Barabanov [1988] showed that every irreducible family of matrices possesses an extremal norm.
Example 4.2.3 shows that irreducibility is indeed crucial for the existence of an extremal norm.

Example 4.2.3 ([Jungers, 2009, Example 2.1]). Let A =

{[
1 1
0 1

]}
. The JSR of this set is

clearly the spectral radius of the matrix, and thus is one. This set does not posses an extremal
norm. Assume to the contrary there exists a vector norm || · || such that for the induced matrix
norm ||[ 1 1

0 1 ]|| = 1. By sub-multiplicativity it follows that for all k ∈ N

∣∣∣∣∣∣∣∣[1 k
0 1

]∣∣∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
[
1 1
0 1

]k∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣[1 1
0 1

]∣∣∣∣∣∣∣∣k ≤ 1.

This is clearly impossible due to the equivalence of norms in R2.

On the other hand, irreducibility is not necessary for a set of matrices to have an extremal

norm. Let A = {A}, A =
1

2

1 1 0
0 1 0
0 0 2

. Then, the 1-norm is an extremal norm for A. Indeed,

||A||1 = 1 = JSR(A). 4

A simple construction of an extremal norm is given in Theorem 4.2.4.

Theorem 4.2.4 ([Berger and Wang, 1992; Guglielmi and Zennaro, 2008]). Let A={Aj ∈ Rs×s :
j=1, . . . , J} be irreducible and for v ∈ Rs define

P (v) = co
⋃
n∈N0
Aj∈A

{±Ajn · · ·Aj1v} . (4.2.1)

(i) If JSR(A) ≥ 1 and for some v ∈ Rs the set P (v) is bounded and has non-empty interior,
then JSR(A) = 1 and P (v) is the unit ball of an extremal norm || · || for A.

(ii) Conversely, if JSR(A) = 1, then P (v) is a bounded subset of Rs for any v ∈ Rs.
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Figure 4.2: The sets P (vi), i ∈ {1, 2, 3}, for the matrices C5 =

{
1

e1/5

[
1 1
0 1

]
,
e

5

[
0 0
1 0

]}
and

vectors v1 =
[
1 0

]T
, v2 =

[
0 1

]T
and v3 = 1√

2

[
1 1

]T
as defined in Example 4.2.5.

Example 4.2.5. Let C5 = {C0, C5} with C0 =
1

e1/5

[
1 1
0 1

]
, C5 =

e

5

[
0 0
1 0

]
. We prove in

Example 4.5.5 that JSR(C5) = 1. The sets P (vi), i ∈ {1, 2, 3} for the vectors v1 =
[
1 0

]T
,

v2 =
[
0 1

]T
, v3 = 1/

√
2
[
1 1

]T
are plotted in Figure 4.2. 4

Definition 4.2.6. Let P ⊆ Cs be a compact, convex and balanced (i.e. rP ⊆ P for all |r| < 1)
set with non-empty interior. We define the Minkowski norm || · ||P : Cs → R by

||x||P = inf {r > 0 : x ∈ rP} .

The Minkowski norm || · ||P is indeed a norm. It is finite because the interior of P is non-
empty, positive definite because P is bounded and 0 ∈ P , absolutely homogeneous because P is
balanced and it satisfies the triangle inequality because P is convex.

The idea of the invariant polytope algorithm is to construct the set in (4.2.1) in finitely many
steps, whenever it is a polytope. We describe polytopes by the convex hull of its vertices. The
terminology in Definition 4.2.7 is adopted from [Guglielmi and Protasov, 2013].

Definition 4.2.7.

(i) For finite V ⊆ Rs, we define the convex hull of V by

co(V ) =

{
x ∈ Rs : x =

∑
v∈V

tvv with
∑
v∈V

tv ≤ 1, tv ≥ 0

}
. (4.2.2)

(ii) For finite V ⊆ Rs, we define the symmetrized convex hull of V by

cos V =

{
x ∈ Rs : x =

∑
v∈V

tvv with
∑
v∈V
|tv| ≤ 1, tv ∈ Rs

}
= co(V ∪ −V ). (4.2.3)

(iii) For finite V ⊆ Cs, we define the complex convex hull or absolutely convex hull of V by

abscoV =

{
x ∈ Cs : x =

∑
v∈V

tvv with
∑
v∈V
|tv| ≤ 1, tv ∈ Cs

}
. (4.2.4)

(iv) For finite V ⊆ Rs+, we define the cone hull of V (with respect to the first orthant) by

co− V =
{
x ∈ Rs+ : x = y − z, y ∈ co(V ), z ∈ Rs+

}
. (4.2.5)
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(v) For simplicity, we denote with co∗ V any of these convex hulls (co, cos, absco, co−) de-
pending on the context.

In all cases we identify the (finite) set V with the matrix whose columns are the coordinates
of the points v ∈ V .

Example 4.2.8. Let V =

{[
1
2

]
,

[
2
1

]}
and x =

[
0
3
2

]
. The norm of x corresponding to the

symmetrized convex hull of V , cos V , defined by (4.2.3), computes to ||x||cos V
= 9

8 . The norm

of x corresponding to the cone hull of V , co− V , defined by (4.2.5), computes to ||x||co− V
= 3

4 .
Since the point x and all vertices v ∈ V are purely real, the norm of x corresponding to the
absolutely convex hull of V , abscoV , defined by (4.2.4), computes to ||x||abscoV = ||x||cos V

= 9
8 .

To compute the norms, one can use the LP-problems in Remark 4.2.9, or by using a ruler
and the plot of the polytopes cos V and co− V given in Figure 4.3. The convex hull abscoV is
four-dimensional, and thus not plotted. The cone hull co− V is only defined for the first orthant,
and thus only plotted in the first orthant.

4

Figure 4.3: The polytopes cos V and co− V in grey, together with the point x ∈ R2 as defined
in Example 4.2.8.

Remark 4.2.9. The Minkowski norm of a point with respect to the convex hull co− or cos
of a finite set of vertices can be efficiently computed with linear programming [Guglielmi and
Protasov, 2013, pages 11 and 21]. If x ∈ Rs and V ⊆ Rs, finite, then

||x||−1
cos

=


max t0 ∈ R
subject to t0x =

∑
v∈V tvv

−qv ≤ tv ≤ qv, qv ≥ 0 for all v ∈ V∑
v∈V qv ≤ 1

. (4.2.6)

If x ∈ Rs+ and V ⊆ Rs+, finite, then

||x||−1
co−

=


max t0 ∈ R
subject to t0x ≤

∑
v∈V tvv, tv ≥ 0 for all v ∈ V∑

v∈V tv ≤ 1 .

(4.2.7)

The function computepolytopenorm [Mejstrik, 2018b] computes the Minkowski norm of a
point with respect to the convex hulls cos or co− of a set of vertices.
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The Minkowski norm of a point with respect to the absolutely convex hull of a finite set of
vertices can be computed using semi-definite programming [Guglielmi and Protasov, 2013, page
17]. If x ∈ Cs and V ⊆ Cs, finite, then

||x||−1
abscoV =


max t0 ∈ R
subject to

∑
v∈V <(tv)<(v)−=(tv)=(v) = t0<(x)∑
v∈V <(tv)=(v) + =(tv)<(v) = t0=(x) and∑
v∈V

√
<(tv)2 + =(tv)2 ≤ 1

(4.2.8)

If x ∈ Rs and V ⊆ Rs, then the computation of the norm in (4.2.8) with respect to the complex
convex hull reduces to the computation of the norm with respect to the symmetrized convex
hull, i.e. ||x||cos V

= ||x||abscoV . The Minkowski-norm corresponding to the absolute convex hull
of a finite set of vertices is not yet implemented in the function computepolytopenorm; it is
intended to include it in a future release.

As one can see in Figure 4.2, the sets P (v) defined in (4.2.1) are usually not polytopes. The
idea of the invariant polytope algorithm lies in choosing a suitable vector v ∈ Rs for the set
P (v). More precisely, we will choose eigenvectors corresponding to the largest eigenvalues in
modulus of certain matrix products.

Definition 4.2.10. Let A ∈ Rs×s.

(i) All eigenvalues of A equal to ρ(A) in modulus are called leading eigenvalues.

(ii) All eigenvectors corresponding to leading eigenvalues are called leading eigenvectors.

(iii) An eigenvalue is simple if its (algebraic) multiplicity equals to 1.

(iv) A leading eigenvalue is unique, if there exists only 1 leading eigenvalue.

Example 4.2.11. The matrix

[
1 1
0 −1

]
has two simple eigenvalues 1 and −1; neither of them

is unique since |1| = |−1|. 4

We make use of the existence of a non-negative leading eigenvector in a special case in the
invariant polytope algorithm 4.2.14.

Lemma 4.2.12 (Perron-Frobenius theorem). If A = [ai,j ]
s
i,j=1 ∈ Rs×s, ai,j ≥ 0 for all i, j ∈

{1, . . . , s}, then there exists a non-negative leading eigenvalue and the corresponding leading
eigenvector can be chosen such that all of its entries are non-negative.

Next we present the invariant polytope algorithm 4.2.14 in a simplified form. In this form the
algorithm will presumably not terminate. However, the core idea of the algorithm should become
clear. Necessary conditions for termination of the algorithm are given in Theorem 4.2.20. The
full algorithm is given, together with our proposed modifications, in Section 4.4.

Definition 4.2.13. Let A ∈ Rs×s, v ∈ Rs, w = Av. We call the vertex w a child (or an alma)
of v, and v a parent of w.
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4.2 Invariant polytope algorithm

Algorithm and Definition 4.2.14 (Invariant polytope algorithm [Guglielmi and Protasov,
2013, 2016]). Given a finite set of matrices A = {Aj ∈ Rs×s : j = 1, . . . , J}.

(1) For some D ∈ N look over all products of matrices in A of length less than D and choose
any shortest product Π1 such that ρc := ρ(Π1)1/l(1) is maximal, where l(1) is the length of
the product Π1 and call Π1 spectral maximizing product-candidate (s.m.p.-candidate). Set

Π̃1 := ρ
−l(1)
c Π1, Ãj = ρ−1

c Aj , j ∈ {1, . . . , J}, Ã =
{
Ãj : j = 1, . . . , J

}
.

Next we try to prove that JSR(Ã) ≤ 1.

(2) Choose a leading eigenvector v
(0)
1 ∈ Cs such that Π̃1v

(0)
1 = λv

(0)
1 , |λ| = 1.

(3) If l(1) ≥ 2, then we compute the corresponding leading eigenvectors of the cyclic permu-

tations of Π̃1, i.e. v
(i)
1 := Ãji · · · Ãj1v1, i ∈ {1, . . . , l(1)− 1}.

We define the cyclic root H :=
{
v

(0)
1 , . . . , v

(l(1)−1)
1

}
and set V := H.

(4) For all v ∈ AV \ V do

If ||v||co∗ V
> 1, then set V := V ∪ v.

Depending on the matrices in A and the leading eigenvector v
(0)
1 we use different

convex hulls:

• Case (P ): If all entries of the matrices Aj , j ∈ {1, . . . , J}, are non-negative, then
we take a non-negative leading eigenvector v in step (2) and use co−.

• Case (R): If the matrices Aj , j ∈ {1, . . . , J}, have positive and negative entries

and the chosen leading eigenvector v
(0)
1 is real, then we use cos.

• Case (C): If the matrices Aj , j ∈ {1, . . . , J}, have positive and negative entries

and the chosen leading eigenvector v
(0)
1 is complex, then we use absco.

(5) Repeat step (4) until ÃV ⊆ co∗ V .

(6) If the loop terminates, then the algorithm terminates and we found the invariant polytope

V , which implies that
∣∣∣∣∣∣Ãj∣∣∣∣∣∣

co∗ V
≤ 1 for all j ∈ {1, . . . , J}; in other words JSR(Ã) ≤ 1.

Remark 4.2.15. In step 4.2.14 (4), we actually add a vertex v ∈ ÃV \ V even if it lies slightly
inside of the polytope, i.e. whenever ||v||co∗ V

> 1− ε, where ε is the tolerance within which we
can compute the norm.

Example 4.2.16. Let A = {A,B} with A =

[
1 1
0 1

]
and B =

[
0 0
1 1

]
. All entries of A and

B are non-negative, and thus we are in case (P ) and use the cone hull co− to compute the
Minkowski-norms in step 4.2.14 (4).

(1) We choose

Π1 = AAB =

[
2 2
1 1

]
,

which is the product with the highest averaged spectral radius among all products of length
less or equal than three. Thus, l(1) = 3, ρc = ρ(Π1)1/l(1) = 31/3 and we define Ã = ρ−1

c A,

B̃ = ρ−1
c B, Ã =

{
Ã, B̃

}
, Π̃1 = ÃÃB̃.
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(2) The s.m.p.-candidate Π̃1 has a unique and simple leading eigenvalue 1 with a corresponding

eigenvector v1 = v
(0)
1 given by

v1 = v
(0)
1 =

1√
5

[
2
1

]
.

(3) We construct the cyclic root

H =
{
v

(0)
1 , v

(1)
1 , v

(2)
1

}
=
{
v1, B̃v1, ÃB̃v1

}
=

1√
5

{[
1
2

]
,

[
0

32/3

]
,

[
31/3

31/3

]}
and set V = H.

(4) We compute the norms of the vectors ÃV \ V . The vector Ãv1 is outside of the polytope
co− V ,

‖Ãv1‖co− V ' 1.04 ≥ 1,

and thus it is added to the set V . All other vectors, i.e. B̃B̃v1 and B̃ÃB̃v1, in the first
iteration are inside of co− V ∪ Ãv1;

‖B̃B̃v1‖co− V ∪Ãv1 ' 0.69 < 1, ‖B̃ÃB̃v1‖co− V ∪Ãv1 ' 0.96 < 1.

We repeat step (4) and test the vectors from the set A(V ∪ Ãv1) \ (V ∪ Ãv1);

‖ÃÃv1‖co− V ∪Ãv1 ' 0.92 < 1, ‖B̃Ãv1‖co− V ∪Ãv1 ' 0.92 < 1.

(5) All vertices from the last iteration are mapped into the interior of the polytope P =
co− V ∪ Ãv1, and thus P is Ã-invariant and JSR(A) = ρ(Π1)1/l(1) = 31/3 ' 1.4422.

The computed points and the cone hull of the computed points are printed in Figure 4.4. 4

Figure 4.4: The polytope co− V as constructed by the invariant polytope algorithm 4.2.14 for
the matrices defined in Example 4.2.16. In (a) we see the cone with respect to the
cyclic root H =

{
v1, B̃v1, ÃB̃v1

}
. In (b) we see the vertices Ãv1, B̃B̃v1 and B̃ÃB̃v1

constructed in the first iteration. In (c) we see the new polytope H ∪ Ãv1 together
with the vertices ÃÃv1 and B̃Ãv1 constructed in the second iteration, which are all
mapped into the interior of co−H ∪ Ãv1.

If there is more than one s.m.p. in step 4.2.14 (1), Guglielmi and Protasov [2016] showed that
one has to construct multiple cyclic trees Hr, r ∈ {1, . . . , R}, in step 4.2.14 (3) and balance
the sizes of the corresponding convex hulls to each other. This is done using the dual leading
eigenvectors which we define next.

Definition 4.2.17 ([Guglielmi and Protasov, 2016, Section 2.3]). Let A ∈ Rs×s and v ∈ Rs be
a leading eigenvector corresponding to the unique and simple leading eigenvalue λ of A. We
define the dual leading eigenvector v∗ (corresponding to v) by

A∗v∗ = λv∗ with (v, v∗) = 1.
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The existence of v∗ in 4.2.17 follows from a standard argument.

Lemma 4.2.18. Whenever A ∈ Rs×s has a unique and simple leading eigenvalue λ with corre-
sponding eigenvector v, the dual leading eigenvector v∗ as defined in 4.2.17 exists.

Proof. Since det(A − λI) = det(A∗ − λI), the left and right-eigenvalues of A, as well as their
multiplicities, are the same. Thus, there exists, up to normalization, a unique simple left-
eigenvector v∗ to λ. The fact that λ is simple, implies that there exists an invertible matrix Λ
such that

A = Λ

[
λ 0

0 Ã

]
Λ−1, with Ã ∈ R(s−1)×(s−1).

The first column of Λ−1 is a right eigenvector of A corresponding to λ and the first row of Λ
is a left eigenvector of A corresponding to λ. Since ΛΛ−1 = I, we can choose v∗ such that
(v, v∗) = 1.

We next describe the balancing procedure. Assume we found s.m.p.-candidates Π1, . . . ,ΠR,
R ∈ N. Then, we need to find factors αq > 0 such that, for some h ∈ N,

αq max
z∈Ãh

{
v
(0)
q ,...,v

(l(q)−1)
q

}|(v∗r , z)| < αr, for all q, r ∈ {1, . . . , R} .

Afterwards set Hq :=
{
αqv

(0)
q , . . . , αqv

(l(q)−1)
q

}
, v∗q := α−1

q v∗q , q ∈ {1, . . . , R}, and V :=
⋃R
q=1Hq.

Example 4.4.4 gives a set of matrices, for which it was wrongly assumed that all balancing
factors are equal to one.

The conditions in Theorem 4.2.20 under which the invariant polytope algorithm 4.2.14 termi-
nates sound very strong, but all numerical examples suggest that they are rather general.

Definition 4.2.19. Let A = {Aj ∈ Rs×s : j = 1, . . . , J}. An s.m.p. Π1 is called dominant if
there exists γ > 0 such that ρ(Ajm · · ·Aj1)1/m < γ < JSR(A) = ρ(Π1)1/l(1), Aj ∈ A, whenever
Ajm · · ·Aj1 , Aj ∈ A, is not an s.m.p..

Theorem 4.2.20 ([Guglielmi and Protasov, 2016, Theorem 3.3]). Let A = {Aj ∈ Rs×s : j =
1, . . . , J}. The invariant polytope algorithm, for cases (P ) and (R), terminates and returns
JSR(A) if and only if

(i) there exist only finitely many s.m.p.s Πr, r ∈ {1, . . . , R}, apart from their cyclic permuta-
tions and powers,

(ii) the s.m.p.s Πr, r ∈ {1, . . . , R}, are dominant and

(iii) the leading eigenvectors v
(0)
r of Πr, r ∈ {1, . . . , R}, are unique and simple.

As far as we know, the invariant polytope algorithm 4.2.14 offers the only characterization,
whether a set of matrices has dominant s.m.p.s or not.

Remark 4.2.21. The conditions in Theorem 4.2.20 implicitly exclude the case of matrices with
zero joint spectral radius. Indeed, if JSR(A) = 0, then every matrix product of matrices in A
has spectral radius zero, and thus there are infinitely many s.m.p.s. Therefore, we may always
assume that ρc > 0, and thus we can define the set Ã = ρ−1

c A in the invariant polytope algorithm
in step 4.2.14 (1).

Note that there is a polynomial time algorithm by Gurvits [1995] to decide whether the joint
spectral radius of a set of matrices is zero or not, with an implementation by Hendrickx, Jungers
and Vankeerberghen [2011].

69



4 Joint spectral radius

There is a subtle difference in the existence of dominant s.m.p.s in dimension s = 1 and s ≥ 2.
Our numerical examples indicate, that most invariant sets of matrices possess a dominant s.m.p..
However, there exist sets of matrices without any s.m.p., see Example 4.1.7. On the contrary,
in dimension s = 1, there always exist an s.m.p., and (in general) all s.m.p.s are not dominant.
Indeed, if a, b ∈ C, |a| > |b|, then JSR({a, b}) = |a|, and thus a is an s.m.p., but a is not
dominant, since ρ(anb)1/n → |a| as n→∞.

4.2.1 Summary of the main modifications of the invariant polytope algorithm

In this section we present the modifications of the invariant polytope algorithm 4.2.14 and
explain their importance. The modifications are explained in detail in Sections 4.3 and 4.4.

4.2.2 Nearly s.m.p.s

Definition 4.2.22 ([Guglielmi and Protasov, 2016, Remark 3.7]). Let A = {Aj ∈ Rs×s : j =
1, . . . , J}. Any matrix product whose averaged spectral radius nearly equals the joint spectral
radius of A is called nearly-s.m.p..

If the spectral gap between the averaged spectral radii of the nearly-s.m.p.s and the JSR is
small, then the generated polytope very slowly absorbs new vertices. In this case, it is helpful to
consider also the polytopes generated by the nearly-s.m.p.s. The suggested balancing procedure
of the nearly-s.m.p.s in [Guglielmi and Protasov, 2016, Remark 3.7] does not always work, as
Example 4.4.5 shows. Section 4.4.5 presents a new method to circumvent this problem.

4.2.3 Extra-vertices

Definition 4.2.23 ([Guglielmi and Protasov, 2016, Section 4]). Every vertex v ∈ Rs, added
to the set V in step 4.2.14 (3), which is not a leading eigenvector corresponding to an s.m.p.-
candidate or a nearly-s.m.p. is called extra vertex.

The concept of extra vertices can speed up the invariant polytope algorithm 4.2.14 in cases
where the constructed polytope is very flat. In Section 4.4.4 we present a method which auto-
matically chooses an appropriate set of extra-vertices. This task was done by hand so far.

4.2.4 Finding s.m.p. candidates

The invariant polytope algorithm 4.2.14 only terminates, if the s.m.p.-candidates Πr, r ∈
{1, . . . , R} are indeed s.m.p.s.. Thus, the invariant polytope algorithm 4.2.14 heavily relies
on a correct initial guess for the s.m.p.-candidates. A plain brute-force search in step 4.2.14 (1)
will fail, if the s.m.p.s’ length is large. Our numerical tests have shown that even for random
pairs of matrices, s.m.p.s of length greater than 30 are not uncommon. A particularly easy
example of two matrices with a very long s.m.p. is given in Example 4.5.5. We present two new
efficient methods that search for s.m.p.s in Sections 4.3 and 4.4.11.

4.2.5 Bounds for the JSR

Whenever the invariant polytope algorithm 4.2.14 does not find an invariant polytope in rea-
sonable time, it is claimed that the original invariant polytope algorithm 4.2.14 returns upper
bounds for the joint spectral radius if one keeps track of the norms ||v||co∗ V

, v ∈ ÃV \ V ,
in 4.2.14 (4) [Guglielmi and Protasov, 2013, Section 2.1]. However, their argument contains a
gap, and the returned bounds by the original algorithm are not sure to be correct in all cases.
We show in Section 4.4.10 how this can happen.
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With our modification in Section 4.4.10 the modified invariant polytope algorithm 4.4.1 returns
intermediate bounds for the JSR and we prove that they are correct. Nevertheless, these bounds
are usually quite rough. A simple modification, presented in Remark 4.4.3, increases the accuracy
of these intermediate bounds. However, the drawback of the modification in Remark 4.4.3 is
that the exact value of the JSR becomes uncomputable.

4.2.6 Parallelisation and natural selection of vertices

A disadvantage of the invariant polytope algorithm 4.2.14 in its current form is that the polytope
is changed inside of the main loop in 4.2.14 (4), which implies that the norm of v ∈ ÃV \ V ,
in 4.2.14 (4) has to be computed with respect to a different polytope for each vertex v ∈ ÃV \V .
Therefore, the linear programming problem for computing the norm is different for each norm
and the so-called warm start of linear programming problems cannot be used. Furthermore, the
main loop 4.2.14 (4) cannot be parallelised. We eliminate these two problems and additionally
speed up the algorithm in Section 4.4.8.

With the same technique we can solve problems arising when the number of matrices in A is
large. In such cases algorithm 4.2.14 stalls simply due to the fact that the number of vertices to
test increases (in the worst case) by a factor of #A in each iteration. For example, if #A = 256,
as in one test case in Section 4.5.3, the original invariant polytope algorithm 4.2.14 will never
reach the third iteration.

4.2.7 Estimating the Minkowski norm

To reduce the number of norms one has to compute in step 4.2.14 (4), and thus to speed up the
algorithm, we use the estimates for the Minkowski norm in Lemma 4.4.6.

4.3 Modified Gripenberg algorithm

In this section, we present the modified Gripenberg algorithm.
From (4.1.4) we know that the averaged spectral radius of any matrix product is a lower

bound for the JSR. Thus, by a clever guess of a matrix product one easily obtains good
(maybe even sharp) lower bounds for the JSR. The modified Gripenberg algorithm 4.3.5 finds
in nearly all of our numerical tests an s.m.p.. It is a modification of the well known Gripenberg
algorithm [Gripenberg, 1996]; one of the first algorithms which gave reasonable estimates for the
JSR. We will describe the Gripenberg algorithm before we present the proposed modifications.

4.3.1 Gripenberg algorithm

Given a finite set of matrices A = {Aj ∈ Rs×s, j = 1, . . . , J}, the Gripenberg algorithm sorts out
matrix products, which are proven to have averaged spectral radius less than the joint spectral
radius of the given set. In this way, the number of matrix products to be computed are kept
reasonably small.

Precisely, given some accuracy 0 < δ ≤ 1, we iteratively compute the sets Ck ⊆ Rs×s, k ∈ N,
by C1 := A and Ck+1 consists of all matrices C ∈ ACk with ||C||1/(k+1) ≥ δ−1b−, where
b− = maxn∈{1,...,k}{ρ(C)1/n : C ∈ Cn} is the current lower bound for the JSR. For each k the

JSR lies in the interval [b−, b+] with b+ = minn∈{1,...k}max{||C||1/n : C ∈ Cn}.

Theorem 4.3.1 ([Gripenberg, 1996]). Let A = {Aj ∈ Rs×s : j = 1, . . . , J}. Whenever δ < 1,
the Gripenberg algorithm terminates and returns b−, b+ ≥ 0 such that JSR(A) ∈ [b−, b+] and
b−/b+ ≤ δ.

For real-world applications the Gripenberg algorithm works well for δ ≤ 0.95. For larger δ
the number of products to compute gets usually too large.
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4.3.2 Modified Gripenberg algorithm

The modified Gripenberg algorithm 4.3.5 uses a different selection mechanism. Instead of dis-
missing products with norms less than some threshold, it keeps the products with highest and
lowest norms; all products whose norms lie in between are disregarded. This way, the modified
Gripenberg algorithm 4.3.5 cannot determine upper bounds for the JSR anymore, however it
still works for finding s.m.p.s of considerable length. The modified Gripenberg algorithm 4.3.5
is listed on page 73.

The modified Gripenberg algorithm 4.3.5 depends on two parameters N and D, controlling the
number of products kept in each iteration and the maximum length of the considered products,
respectively. Note that the modified Gripenberg algorithm 4.3.5 with parameters N = D = ∞
is the Gripenberg algorithm with accuracy δ = 1.

Theorem 4.3.2. The modified Gripenberg algorithm 4.3.5 has linear complexity in the number
J = #A of matrices, in the number N ∈ N of kept products in each iteration and in the maximal
length D ∈ N of the products.

Proof. In every iteration, in total D many, the modified Gripenberg algorithm 4.3.5 computes
at most 2 ·N · J norms and spectral radii.

Remark 4.3.3. Clearly one can pursue other selection strategies in the modified Gripenberg
algorithm 4.3.5 in step (4.3.2). The straightforward choice of taking the 2 · N products with
highest averaged norm performs very badly.

Taking an arbitrary subset of Md of size 2 · N performs mostly similarly to the proposed
modified Gripenberg algorithm 4.3.5, yet in some cases worse, see Figure 4.9. Furthermore, the
modified Gripenberg algorithm 4.3.5 in the given form is deterministic, so we prefer it over a
non-deterministic version.

Example 4.3.4. Let A = {A,B} with A =

[
1 1
0 1

]
and B =

[
0 0
1 1

]
, N = 1, D = 3.

In the first iteration we compute ||A||2 ' 1.61, ||B||2 ' 1.41, ρ(A) = 1, ρ(B) = 1. Thus,
ρc = 1. Since we keep 2 · N matrix products in each step, we do not sort out any matrix
product.

In the second iteration we compute

||AA||1/22 ' 1.55, ||BA||1/22 ' 1.49, ||AB||1/22 ' 1.41, ||BB||1/22 ' 1.19,

ρ(AA)1/2 = 1, ρ(BA)1/2 ' 1.41, ρ(AB)1/2 ' 1.41, ρ(BB)1/2 = 1,

and get a new lower bound ρc ' 1.41. Since ||BB||1/2 < ρc, we disregard this product. From
the remaining products we choose those with highest and lowest norm, i.e. AA and AB.

In the third iteration we compute the averaged norms and averaged spectral radii of the matrix
products

||AAA||1/32 ' 1.44, ||BAA||1/32 ' 1.47, ||AAB||1/32 ' 1.47, ||BAB||1/32 ' 1.41,

ρ(AAA)1/3 = 1, ρ(BAA)1/3 ' 1.44, ρ(AAB)1/3 ' 1.44, ρ(BAB)1/3 ' 1.26,
(4.3.1)

and get a new lower bound ρc ' 1.44. If we continue with this algorithm, we disregard the

product BAB, since ||BAB||1/32 < ρc and choose the product AAA which has the smallest
averaged norm among the remaining products. Moreover, we choose either BAA or AAB which
have the largest averaged norm in (4.3.1). Since D = 3, the modified Gripenberg algorithm 4.3.5
returns ρc ' 1.44 as a lower bound for JSR(A) and the product AAB as an s.m.p.-candidate.

The products computed in this example, together with the values for the averaged norms and
spectral radii, are plotted in Figure 4.5. 4
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4.3 Modified Gripenberg algorithm

Algorithm 4.3.5 (modified Gripenberg algorithm).

Input :

Set of square matrices A =
{
Aj ∈ Rs×s : j = 1, . . . , J

}
.

Number of products kept in each step N ∈ N.
Maximal length of products D ∈ N.
Output :

S.m.p.-candidates C.
Lower bound ρc for JSR(A).

Initialization :

Start with the product of length 0, M0 := {I} , where I is the identity matrix.

Set current lower bound for JSR, ρc := 0.

Main Loop :

for d ∈ {1, . . . , D} do

Compute all possible new products Md := AMd−1.

Update the lower bound ρc := max
{
ρc, ρ(Md)

1/d : Md ∈Md

}
.

Remove products whose norms are less than ρc, Md :=
{
Md ∈Md : ||Md||1/d ≥ ρc

}
.

Keep only products with highest and lowest norms:

Sort Md w.r.t ||Md|| and keep M1, . . . ,MN and M#Md−N , . . . ,M#M.

Thus, Md := {M1, . . . ,MN ,M#Md−N , . . . ,M#Md
: Mi ∈Md} .

(4.3.2)

end

Choose products C :=
{
Mdi ∈Md : ρ(Mdi)

1/d = ρc, d = 1, . . . , D
}
.

Remove cyclic permutations and powers of products from C.
return C, ρc.

Figure 4.5: Tree built up by the modified Gripenberg algorithm 4.3.5, with parameter N = 1,
D = 3, for the matrices defined in Example 4.3.4. The algorithm terminates after
D = 3 steps and returns the product AAB as an s.m.p.-candidate. The values in || · ||
and ρ( · ) denote the averaged norm and averaged spectral radius of the corresponding
product.
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Remark 4.3.6. The function findsmp [Mejstrik, 2018b] is an implementation of the modi-
fied Gripenberg algorithm 4.3.5. A simple implementation of the modified Gripenberg algo-
rithm 4.3.5 for Matlab is listed on page 95. The spectral radii are computed with the Matlab
function eig, which may not be the fastest available procedure.

The modified invariant polytope algorithm 4.4.1 can also be used to search for s.m.p.-candi-
dates. Thus, we present the numerical examples showing the performance of the modified
Gripenberg algorithm 4.3.5 only after Section 4.4.

4.4 Modified invariant polytope algorithm

In this section we present the modifications for the invariant polytope algorithm 4.2.14. Its
current implementation [Mejstrik, 2018b, December 2018] only handles the case (P ) (as explained
in 4.2.14 (4)) with non-negative matrices and the case (R) with real leading eigenvalues. Case
(C) with complex leading eigenvalues is not yet implemented; it is intended to include this case
in a future release. Therefore, we restrict the discussion of the modified invariant polytope
algorithm 4.4.1 to the cases (P ) and (R). Nevertheless, most of the results are valid in the case
(C) as well.

The modified invariant polytope algorithm 4.4.1 is listed on page 75. We prove the termination
criteria and the correctness of the returned bounds in Theorem 4.4.2.

Theorem 4.4.2. Let A = {Aj : j = 1, . . . , J} ⊆ Rs×s be a finite set of square matrices, δ ∈ (0, 1]
and ρc be the averaged spectral radius of the s.m.p.-candidates Πr, r ∈ {1, . . . , R}.

(i) For δ = 1, the modified invariant polytope algorithm 4.4.1 terminates, and thus JSR(A) =
ρc, if and only if the original invariant polytope algorithm 4.2.14 terminates.

(ii) For 0 < δ < 1 the modified invariant polytope algorithm 4.4.1 terminates, and thus
JSR(A) ∈ [ρc, δ

−1ρc], if JSR(A) < δ−1 · ρc.

(iii) Moreover, for any iteration k ∈ N0, JSR(A) ∈ [ρc, δ
−1 · bk+1 · ρc], where bk+1 is defined in

Section 4.4.10.

Before we present the proof of Theorem 4.4.2 on page 82, we describe all modifications and
extensions of the modified invariant polytope algorithm 4.4.1. These are numbered (4.4.1)-
(4.4.11) in the modified invariant polytope algorithm 4.4.1.

Remark 4.4.3. The function tjsr [Mejstrik, 2018b] is an implementation of the modified
invariant polytope algorithm 4.4.1.

The most important input parameters of our implementation of the modified invariant poly-
tope algorithm are described alongside the description of the modifications in Sections 4.4.1
to 4.4.11. A full list of the input parameters is given in the manual together with our imple-
mentation.

4.4.1 Irreducibility of input matrices (4.4.1)

The input matrices in A should be irreducible, i.e. do not have a trivial common invariant
subspace. Otherwise, the modified invariant polytope algorithm 4.4.1 may not be able to ter-
minate, since the existence of an extremal norm is not ensured, see Example 4.2.5. If the
matrices in A are reducible, then there exists a basis in which all of the matrices Aj have block
upper triangular form, see e.g. [Jungers, 2009, Proposition 1.5]. In this case, the JSR of A
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4.4 Modified invariant polytope algorithm

Algorithm 4.4.1 (Modified invariant polytope algorithm). All modifications to algo-
rithm 4.2.14 are marked with ∗ below. Numbered lines are subroutines described in detail
in Sections 4.4.1 – 4.4.11.

Input :

Set of irreducible square matrices A =
{
Aj ∈ Rs×s : j = 1, . . . , J

}
. (4.4.1)

Tolerance 0 < ε < 1 for computing the norms N(v) in (4.4.8) (ε ' 0).

Accuracy 0 < δ ≤ 1 to which the JSR shall be computed (δ ' 1).

Output :

Exact value ρc of JSR(A) or bound [ρc, b · ρc] for JSR(A).

Invariant polytope V.

Spectral maximizing products Πr, r ∈ {1, . . . , R} .

Initialization :

∗ Search for s.m.p.-cand. and nearly-s.m.p.s Πr = Ajrl(r) · · ·Ajr1 , r ∈ {1, . . . , R} , R ∈ N,

and denote with l(r) = l(Πr) the lenght of the product Πr. (4.4.2)

Set ρr := ρ(Πr)
1/l(r), ρc := max ρr, Ã := δρ−1

c A, Π̃r = (δρ−1
c )l(r)Πr. (4.4.3)

Compute the leading eigenvectors v(0)
r of Π̃r.

For all r ∈ {1, . . . , R} where l(r) ≥ 2, we compute the root vectors

v(i)
r := (ρc/δρr)

iÃjri . . . Ãjr1v
(0)
r , i ∈ {1, . . . , l(r)− 1} .

∗ Compute extra-vertices vR+1, . . . , vQ ∈ Rs, Q ∈ N. (4.4.4)

∗ Provide the balancing factors α1, . . . , αQ ∈ R. (4.4.5)

Set H :=
{
α1v

(0)
1 , . . . , α1v

(l(1)−1)
1 , . . . , αRv

(1)
R , . . . , αRv

(l(R)−1)
R

}
.

Set V0 := H ∪ {αR+1vR+1, . . . , αQvQ} .
Set N(v) :=∞ for all v ∈ V0, b0 :=∞, k := 0.

Main Loop :

while ÃVk \ Vk * (1− ε) co∗ Vk

∗ Select new children Ek+1 ⊆ ÃVk \ Vk. (4.4.6)

∗ Choose subset of vertices Wk ⊆ Vk. (4.4.7)

∗ Compute/estimate norms N(v) := ||v||co∗Wk
for all v ∈ Ek+1. (4.4.8)

Vk+1 := Vk ∪ {v ∈ Ek+1 : N(v) > 1− ε} . (4.4.9)

∗ Compute bound bk+1 ≥ 1 for JSR(Ã). (4.4.10)

∗ Restart if a matrix product with higher averaged spectral radius is found. (4.4.11)

Print JSR(A) ∈ [ρc, δ
−1 · bk+1 · ρc].

Increase k := k + 1.

end

return V, {Πi}i , ρc.
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equals to the maximum of the JSR of the corresponding diagonal blocks. In our implemen-
tation [Mejstrik, 2018b] we, therefore, automatically search for non-trivial common invariant
subspaces prior to starting the algorithm. Here we make use of the functions permTriangul

and jointTriangul from [Hendrickx, Jungers and Vankeerberghen, 2011] as well as a new
method invariantsubspace [Mejstrik, 2018b] which searches for non-trivial common invariant
difference subspaces as described in [Charina and Protasov, 2017].

4.4.2 Search for s.m.p.-candidates (4.4.2)

In our implementation [Mejstrik, 2018b] we use the modified Gripenberg algorithm 4.3.5 to
search for s.m.p.-candidates.

Every product, which is shorter than the s.m.p.-candidate and has averaged spectral radius
greater or equal to τ · ρc, τ ∈ (0, 1), is considered to be a nearly-s.m.p.. In our implementation
we use a heuristic default value of τ = 0.9999.

4.4.3 Approximate computation (4.4.3)

If we multiply the set of matrices Ã in step 4.4.1 (4.4.3) by a factor 0 < δ < 1, the modified
invariant polytope algorithm 4.4.1 cannot return exact values for the JSR anymore; only up to a
relative accuracy of δ. Indeed, if the modified invariant polytope algorithm 4.4.1 terminates, then
‖Ãj‖co∗ V ≤ 1 or, equivalently, ‖Aj‖co∗ V ≤ δ−1 · ρc, j ∈ {1, . . . , J}, and thus JSR(A) ≤ δ−1 · ρc.
Nevertheless, there are cases where an approximate computation of the JSR is useful.

(i) If the dimension s of matrices is large, then the modified invariant polytope algorithm 4.4.1
will not terminate anyway in most cases, and thus only gives bounds for the JSR. An
accuracy of δ ' 0.97 speeds up the computation tremendously and the returned bounds
are mostly better (at least in our numerical examples) than for δ = 1.

(ii) If the s.m.p.s are not dominant, or there is an infinite number of dominant s.m.p.s, or the
corresponding leading eigenvalues are not unique or simple, then the modified invariant
polytope algorithm 4.4.1 will not terminate. In these cases, choosing δ ' 1− 10−9 ensures
that the invariant polytope algorithm 4.4.1 terminates and the obtained bounds are nearly
the same as when δ = 1.

(iii) If one is interested only whether JSR(A) < C for some C > 0, one can choose 1 > δ > ρc/C
and the modified invariant polytope algorithm 4.4.1 terminates much faster.

4.4.4 Adding extra-vertices automatically (4.4.4)

Given some threshold T > 0, we compute the singular value decomposition of the cyclic rootH ={
α1v

(0)
1 , . . . , α1v

(l(1)−1)
1 , . . . , αRv

(1)
R , . . . , αRv

(l(R)−1)
R

}
and add all singular vectors vR+1, . . . , vS

corresponding to singular values which are in modulus less than T > 0 to the cyclic root H. In
view of Definition 4.2.23 these singular vectors are extra vertices. This strategy yields a good
behaviour of the modified invariant polytope algorithm 4.4.1 in most of our examples. Note that
with this choice of extra vertices the polytope co∗ V0 always has non-empty interior.

In our implementation we use a heuristic default value of T ' 0.1.

4.4.5 Balancing of cyclic trees (4.4.5)

The original balancing procedure is described in [Guglielmi and Protasov, 2016, Section 3].
We present its improved version for the case of extra-vertices and nearly-s.m.p.s. If δ < 1
no balancing is necessary as can be seen in the proof of Theorem 4.4.2. If δ = 1, for v∗r ,
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r ∈ {1, . . . , R}, i.e. the dual eigenvectors of the s.m.p.-candidates Πr, and q ∈ {1, . . . , Q} we
define for h ∈ N

pq,r = max

{
|(v∗r , z)| : z ∈ Ãh ·

{(
ρc
ρr

)0

v(0)
q , . . . ,

(
ρc
ρr

)l(q)−1

v(l(q)−1)
q

}}
, (4.4.12)

if vq is an extra-vertex, i.e. q ≥ R + 1, then the maximum in (4.4.12) is only over z ∈ Ãh {vq}.
The factor (ρc/ρr)

i ensures that all vertices of the cyclic root of nearly-s.m.p.s get the same
weight in the computation. Note that, if vq is the leading eigenvector of an s.m.p.-candidate,
then ρc/ρr = 1. Now one has to determine numbers α1, . . . , αQ > 0 such that{

αqpq,r < αr, whenever vq is the leading eigenvector of an s.m.p.-candidate and
αqpq,r < 1 otherwise.

.

Then, we multiply all vertices v
(i)
q , q ∈ {1, . . . , R}, i ∈ {0, . . . , l(q)− 1}, and extra-vertices vq,

q ∈ {R+ 1, . . . , Q}, from the root H with the corresponding balancing factor αq.
In our implementation we distinguish between extra-vertices and vertices from nearly-s.m.p.s.,

precisely we solve the following system with unknowns αq, q ∈ {1, . . . , Q} and r ∈ {1, . . . , R},
αqpq,r < αr, whenever vq is the leading eigenvector of an s.m.p.-candidate,
αqpq,r = .999 · ρq, whenever vq is the leading eigenvector of a nearly-s.m.p.,
αqpq,r = 1/100, whenever vq is an extra-vertex.

The result [Guglielmi and Protasov, 2016, Theorem 3.3] ensures that the modified invariant
polytope algorithm 4.4.1 terminates when started with both the s.m.p.-candidates, the nearly-
s.m.p.s and the extra-vertices if and only if it terminates when started solely with the s.m.p.-
candidates.

It was assumed (personal communication), at least for dimension s = 1, that the balancing
factors for transition matrices occurring in subdivision theory are always equal to 1. It is not hard
to find counterexamples in dimensions s ≥ 2. The claim is not valid already in the univariate
case, as the next example shows.

Example 4.4.4. Let S be the univariate subdivision scheme defined by the mask a and the
dilation matrix M given by

a =
1

12

[
3 3 4 3 3 4 3 3 4 3 3

]
, M =

[
−3
]
.

Taking the digit set D = M [0, 1] ∩ Z = {−2,−1, 0}, we construct the set ΩC = {−4,−3,−2,
−1, 0, 1} and the corresponding transition matrices Td,ΩC = (a(α −Mβ))α,β∈ΩC , d ∈ D. The
restriction of the transition matrices to the space V0(ΩC) of the first order differences with a
basis 

1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1


yields the set of matrices T |V0(ΩC) =

{
T−2|V0(ΩC), T−1|V0(ΩC), T0|V0(ΩC)

}
given by

−1

12


0 0 0 3 0
3 0 1 2 0
2 0 2 1 0
1 0 3 0 0
0 0 0 0 0

 , −1

12


0 0 0 0 3
0 3 0 1 2
1 2 0 2 1
2 1 0 3 0
3 0 0 0 0

 and
−1

12


0 0 0 0 0
0 0 3 0 1
0 1 2 0 2
0 2 1 0 3
0 3 0 0 0

 ,
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respectively. For the s.m.p.s Π1 = T−2T−1T−1|V0(ΩC) and Π2 = T−1T−1T0|V0(ΩC) with balancing
factors α1, α2 = 9/10 the modified invariant polytope algorithm 4.4.1 terminates after 4 itera-
tions and the Hölder regularity of the basic limit function is − log|M | JSR(T |V0(ΩC)) ' 0.9413.
With the balancing factors α1 = α2 = 1 the invariant polytope algorithm does not terminate.
The basic limit function can be seen in Figure 4.6. 4

Figure 4.6: The basic limit function for the subdivision scheme from Example 4.4.4.

Example 4.4.5 shows the advantage of the new balancing procedure in connection with nearly-
s.m.p.s.

Example 4.4.5. Given A1 =

[
2 1
−1 2

]
, A2 =

[
2 0
2 1

]
. The irreducible set A = {A1, A2}

has A2A1 as an s.m.p. and ρ(A) ' 2.5396. Assuming we start the modified invariant poly-
tope algorithm 4.4.1 with this candidate and the nearly-s.m.p. A2, with corresponding leading

eigenvectors v
(0)
1 '

[
0.9121 0.4100

]T
, v

(0)
2 '

[
0.4472 0.8944

]T
and leading dual eigenvectors

v∗1 '
[
0.9958 0.2238

]T
, v∗2 '

[
2.2361 0.0000

]T
. For the balancing procedure as described

in [Guglielmi and Protasov, 2016, Remark 3.7] we need to find numbers α1, α2 > 0 such that for
some h ∈ N, say h = 10, for

p1,2 = max
z∈Ãh

{
v
(0)
1 ,v

(1)
1

} |(v∗2, z)| = .0395 . . . ,

p2,1 = max
z∈Ãh

{
v
(0)
2

} |(v∗1, z)| = .8196 . . . ,

the following two inequalities hold:

α1 · 2.0395 . . . = α1p1,2 < α2

α2 · 0.8196 . . . = α2p2,1 < α1.

This is clearly impossible, since 2.0395 . . . · 0.8196 . . . > 1. By [Guglielmi and Protasov, 2016,
Section 3], since there are no admissible balancing factors for h = 10, there are no admissible
balancing factors for h > 10.

Nevertheless, since A1A2 is a dominant s.m.p., the modified invariant polytope algorithm 4.4.1
terminates if it is started only with A1A2. Thus, by [Guglielmi and Protasov, 2016, Theorem 4.1],
there must exist balancing factors such that the algorithm terminates when started with Π1 =
A1A2 and Π2 = A1. Indeed, the algorithm terminates with α1 = 1, α2 = 1

2 . 4

4.4.6 Natural selection of vertices (4.4.6)

In the original invariant polytope algorithm 4.2.14, in every iteration all vertices generated in
the foregoing iteration, which were not mapped inside the polytope, were used to construct new

78



4.4 Modified invariant polytope algorithm

vertices. In the modified invariant polytope algorithm 4.4.1 we only take a subset of those. We
choose the vertices under the mild condition that

for every N ∈ N there exists K ∈ N, K ≥ N such that
N⋃
n=0

ÃnV0 ⊆ co∗ VK , (4.4.13)

where An are all matrix products of length n with matrices from A. In other words, we do not
forget any vertex to select. Two selection strategies turned out to work well:

(a) Choose those vertices which have the largest (for example the highest decile) norm ||V + · ||2,
where V + denotes the Moore-Penrose pseudo-inverse of V , and

(b) Choose those vertices whose parent vertex has largest norm with respect to the norm
|| · ||co∗ V

.

Strategy (a) reduces the number of vertices in V by roughly 20%, strategy (b) by roughly 10%.
Since the intermediate bounds bk+1 for the JSR decrease very slowly when we use strategy (a)
only, we iterate three times (a) and one time (b) in our implementation.

The natural selection of new vertices makes the modified invariant polytope algorithm 4.4.1
applicable for problems with a large number of matrices, since it ensures that the number of
norms to be computed in each iteration is reasonably small. Of course, it does not substantially
decrease the total number of norms we need to compute.

4.4.7 Simplified polytope (4.4.7)

In some examples the vertices constructed by the modified invariant polytope algorithm 4.4.1 are
very near to each other, i.e. are at distances in the order of the machine epsilon. Those vertices
are irrelevant for the size of the polytope; so we disregard them. This also protects against
stability problems in the LP-programming part, since for simplices with vertices very near to
each other LP-solvers perform very badly. This phenomenon happens frequently when there are
multiple s.m.p.s. In our implementation we use a variable threshold in step 4.4.1 (4.4.7) when
determining which vertices of the polytope we use in the computation of the norm.

It would be possible to choose a polytope Wk(v), v ∈ Ek+1 ⊆ ÃVk \ Vk, for each norm
||v||co∗Wk(v) we need to compute, since for each v we only need s+1 vectors from Vk to compute
the norm ||v||co∗ Vk

exactly. Unfortunately we have no idea so far, how to select an adequate
subset of Vk in a reasonable time, i.e. faster than the computation of the norm would take.

4.4.8 Parallelisation (4.4.8) & (4.4.9)

This is one of the main differences to the original implementation.
Instead of testing each vertex one after another, and adding it immediately to the set of

vertices Vk if it is outside of the polytope, we compute the norms of all selected vertices from
step 4.4.1 (4.4.6) with respect to the same polytope. Afterwards we add all vertices (which are
outside of the polytope) at once to the set Vk.

This clearly leads to larger polytopes, in our examples the number of vertices increases by 10%.
However, this is compensated by the fact that we can parallelise the computations of the norms.
The speed-up is nearly linear in the number of available threads. Since the LP model does
not change, we can speed up this part further by warm starting the LP problems, i.e. we reuse
the solutions obtained from the computations of the other vertices. If there are no suitable
candidates for the warm start, we still can speed up the LP problem by starting the search for
the solution at the nearest vertex point of the polytope W . The speed-up from warm starting
is roughly 50-70%.
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4.4.9 Norm estimation (4.4.8)

Before computing the exact norm of a vector v ∈ Ek+1 ⊆ ÃVk \ Vk, we try to determine its
relative position (inside or outside of the polytope co∗ Vk) using the estimates in Lemma 4.4.6.
If a vertex is proven to be inside or outside of the polytope, we do not have to compute its exact
Minkowski norm anymore. If we cannot determine its position we compute the exact Minkowski
norm. Unfortunately, the estimates in Lemma 4.4.6 are quite rough and fail to determine the
position for most vertices, except in the positive case (P ) where Lemma 4.4.6 (v) gives very
accurate estimates.

Lemma 4.4.6. Given V ⊆ Rs and x ∈ Rs.

(i) If W are the vertices of another polytope with non-empty interior such that co∗W ⊆ co∗ V ,
then || · ||co∗ V

≤ || · ||co∗W
.

(ii) ||x||cos V
≤ ||t||1 for all t ∈ R#V such that V t = x.

(iii) ||x||cos V
≥ ||V +x||2, where V + is the Moore-Penrose pseudo-inverse of V .

(iv) If there exists w ∈ Rs such that |(w, v)| < |(w, x)| for all v ∈ V ∪ −V , then x 6∈ cos V .

(v) If V ⊆ Rs+, x ∈ Rs+, and there exists v ∈ V such that xl ≤ vl for all l ∈ {1, . . . , s}, then
x ∈ co− V .

Proof. (i) This immediately follows from Definition 4.2.6 of the Minkowski norm.

(ii) Let x ∈ cos V and t ∈ R#V such that x = V t. Define x̃ = x
||x||cos V

∈ ∂ cos V and

t̃ = t
||x||cos V

. It follows that x̃ = V t̃ with
∣∣∣∣t̃∣∣∣∣

1
≥ 1. Indeed,

∣∣∣∣t̃∣∣∣∣
1
< 1 would imply that

x̃ ∈ (cos V )◦. Clearly, 1 = ||x̃||cos V
≤
∣∣∣∣t̃∣∣∣∣

1
and ||x||cos V

≤ ||t||1.

(iii) Let x ∈ cos V and t ∈ R#V such that x = V t. It follows that ||t||1 ≥ ||t||2 ≥ ||V +x||2 be-
cause, by construction of the Moore-Penrose pseudo inverse, V +x is the unique solution to
V t = x with minimum 2-norm. Finally, by the proof of (ii), ||x||cos V

= min
t∈R#V :V t=x

||t||1 ≥∣∣∣∣V +x
∣∣∣∣

2
.

(iv) If |(w, v)| < |(w, x)| for all v ∈ V , then there exists a hyperplane which separates the point
x and the polytope V . From this the claim follows.

(v) Let x ∈ Rs+ with xl ≤ vl, l ∈ {1, . . . , s}, for some v ∈ V . Therefore, z = v−x ∈ Rs+. Thus,
x = v − z with v ∈ V ⊆ co− V , z ∈ Rs+, by (4.2.5), belongs to x ∈ co− V .

Remark 4.4.7. Estimate 4.4.6 (v) uses the fact that the norms || · ||co− V
are orthant mono-

tonic. It would be interesting to know whether and when Minkowski norms || · ||cos V
are orthant

monotonic. This would allow to transfer the estimate 4.4.6 (v) to the case (R).

4.4.10 Intermediate bounds for the joint spectral radius (4.4.10)

The original method to compute intermediate upper bounds for the JSR is described in [Guglielmi
and Protasov, 2013, Section 2.1]. This method sometimes may return wrong intermediate
bounds. We present an improved method to compute these bounds. Thus, the modified in-
variant polytope algorithm 4.4.1 can be used to give estimates for the JSR of finite sets of
matrices.
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Definition 4.4.8. We define b0 =∞ and bk+1, k ∈ N0 by

bk+1 =

{
bk, if Ek+1 $ ÃVk \ Vk and

min
{
bk,max

{
1, N(v)(1− ε)−1 : v ∈ Ek+1

}}
, if Ek+1 = ÃVk \ Vk.

Lemma 4.4.9. For all k ∈ N0, JSR(A) ∈ [ρc, δ
−1 · bk+1 · ρc].

Proof. The lower bound follows by Theorem 4.1.2.
For the upper bound, by 4.4.1 (4.4.3), it suffices to show that JSR(Ã) ≤ bk+1 for all k ∈ N0.

The claim is true for b0 since JSR(Ã) <∞. Now assume the claim is true for k − 1, k ∈ N. We
show that it is true for k. If Ek+1 $ ÃVk \Vk, then bk+1 = bk and the claim follows for this case.

Hence, we assume that Ek+1 = AVk \ Vk. If the algorithm terminates in this iteration, then
JSR(Ã) ≤ 1. Thus, the claim follows for this case, since bk+1 ≥ 1, k ∈ N0, by definition of bk+1.

Hence, we assume that the algorithm does not terminate in step k. which implies that there
exists v ∈ Ek+1 such that N(v)(1 − ε)−1 > 1. Consequently, with b̃k+1 = max{N(v)(1 − ε)−1 :
v ∈ Ek+1},

b̃k+1 = max{1, N(v)(1− ε)−1 : v ∈ Ek+1}.

If b̃k+1 ≥ bk, then JSR(Ã) ≤ bk ≤ b̃k+1 and the claim follows for this case.
Hence, we assume that b̃k+1 < bk. We have to show that ||v||co∗ Vk

≤ b̃k+1 for all v ∈ ÃVk. If

v ∈ Vk, then ||v||co∗ Vk
≤ 1 ≤ bk+1, because Vk ⊆ co∗ Vk and bk+1 ≥ 1. If v ∈ ÃVk \ Vk = Ek+1

and the value of N(v) was computed in iteration k̃ ≤ k, k̃ ∈ N0, then ||v||co∗ Vk
≤ ||v||co∗ Vk̃

≤
||v||co∗Wk̃

= N(v)(1− ε)−1 ≤ bk+1, where Wk̃ is defined in 4.4.1 (4.4.7).

Therefore, JSR(Ã) ≤ bk+1.

We now discuss the problem which can arise when intermediate bounds are computed. As
already mentioned, in the original invariant polytope algorithm 4.2.14, a vertex is immediately
added to the set of vertices V of the polytope co∗ V , when this vertex lies outside of the polytope.
Assume that the set Ã consists of two matrices Ã1, Ã2 ∈ Rs×s and we have to test whether all
children of v ∈ V are inside or outside the polytope co∗ V . Assume now, ‖Ã1v‖co∗ V = N1 > 1,
and thus Ã1v is added to the set of vertices V , and assume that ‖Ã2v‖co∗ V ∪Ã1v

= N2 > 1. Let

N = max {N1, N2}. Now, V is not an invariant polytope for the matrices N−1Ã in general, and
thus JSR(Ã) 6≤ N in general. Indeed, although we have that ‖Ã1v‖co∗ V = N1 ≤ N , for the

other vertex Ã2v we only know that
∣∣∣∣∣∣Ã2v

∣∣∣∣∣∣
co∗ V

≥
∣∣∣∣∣∣Ã2v

∣∣∣∣∣∣
co∗ V ∪Ã1v

= N2 ≤ N .

4.4.11 New stopping criterion (4.4.11)

If the candidates Πr, r ∈ {1, . . . , R}, are s.m.p.s, then all intermediately occurring matrix
products in the modified invariant polytope algorithm 4.4.1 have spectral radius less than 1.
Otherwise, if the candidates are not s.m.p.s, then it still can happen that all intermediately
occurring matrix products have spectral radius less than 1 and the modified invariant polytope
algorithm 4.4.1 never stops, see Example 4.4.12. However, this never happened in any non-
artificial example.

Furthermore, products with larger averaged spectral radius always occurred very fast. Thus,
from a practical point of view, (4.4.1) (4.4.11) is a better way to check whether the candidates
are s.m.p.s or not, than the method described in [Guglielmi and Protasov, 2013, Proposition 2].
The method of Guglielmi and Protasov [2013, Proposition 2] on the other hand, is fail-proof and
eventually always strikes whenever an s.m.p.-candidate is not an s.m.p.. In our implementation
tjsr of the modified invariant polytope algorithm [Mejstrik, 2018b] we, thus, implement both
stopping criteria. To compute the spectral radii, we use the Matlab function eig. This may not
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be the fastest available procedure, but it is fast enough compared to the time the computation
of the norms take.

We illustrate how the stopping criterion 4.4.1 (4.4.11) may fail.

Definition 4.4.10. Let A = {Aj ∈ Rs×s : j = 1, . . . , J} and η ≥ 0. We define the set Mη by

Mη =
{

(jn)n ∈ {1, . . . , J}N : ρ(Ãjm · · · Ãj1)1/m ≤ η for all m ∈ N
}
.

For η = 1, the products Ãjn · · · Ãj1 , (jn)n ∈ M1, Ãj ∈ Ã, are exactly the products occurring
in the modified invariant polytope algorithm 4.4.1 until the stopping criterion 4.4.1 (4.4.11)
strikes. The hope would be that the norms of the products in this sequence stay bounded, i.e.

there exists C > 0 such that
∣∣∣∣∣∣Ãjn · · · Ãj1∣∣∣∣∣∣ < C for all n ∈ N. Unfortunately, this is wrong.

Even for η = 0, as in Example 4.4.11, the norms of the products may go to infinity

Example 4.4.11. Let A =

[
2 0
0 2

]
, B =

[
0 2
0 0

]
and C = AT . Clearly, JSR({A,B,C}) = 2.

Indeed, ρ(A) = 2 and ||A||2 = ||B||2 = ||C||2 = 2. The matrices of the sequence (AnB)n∈N have
spectral radius zero, yet the sequence ||AnB|| goes to infinity as n→∞.

Note that, although the set of matrices {A,B,C} is irreducible, the sequence (AnB)n∈N only
consists of products of matrices of the reducible set {A,B}. 4

Unfortunately, the spectral radius of the (wrong) s.m.p.-candidate B in Example 4.4.11 is
zero. Thus, by Remark 4.2.21, the invariant polytope algorithm cannot be used. Therefore, we
need another example to prove that the stopping criterion may fail.

Example 4.4.12. Let A =

[
1 1
0 1

]
and B = 3

4A. Then JSR({A,B}) = 1, ρ(AnB) < 1 for all

n ∈ N, but ||AnB|| → ∞ as n→∞. Indeed, for n ∈ N, AnB =
3

4

[
1 n+ 1
0 1

]
, and thus it follows

that ρ(AnB) = 3
4 and ||AnB||1 = 6+3n

4 .
Now define the irreducible set A =

{
A,AT , B,BT

}
. Then, the modified invariant polytope

algorithm 4.4.1, together with an (unlucky) version of the natural selection of vertices procedure

and started with the (wrong) s.m.p.-candidates Π1 = A, Π2 = AT , and root vectors v
(0)
1 =[

1 0
]T

, v
(0)
2 =

[
0 1

]T
, can construct an arbitrarily large polytope, solely with products whose

spectral radius is strictly less than one. Indeed, for n ∈ N, applying the sequence of products

AnB to the starting vector v2 we get the sequence of vectors AnBv2 =
[
3n/4 3/4

]T
, n ∈ N.

The same calculation shows that (AT )nBT v1 =
[
3/4 3n/4

]T
, n ∈ N. These two sequences

generate an unbounded polytope. 4

Proof for Theorem 4.4.2

Proof. First note the following. If V orig
N , V mod

N ⊆ Rs, N ∈ N, denote the vertices constructed in
the N th iteration of the original invariant polytope algorithm 4.2.14 and the modified invariant
polytope algorithm 4.4.1, respectively, then, due to the construction of the original invariant
polytope algorithm 4.2.14,

co∗ V
orig
N =

N⋃
n=0

ÃnV0 (4.4.14)

and, due to the construction of the modified invariant polytope algorithm 4.4.1,

co∗ V
mod
N ⊆

N⋃
n=0

ÃnV0. (4.4.15)
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(i) Let δ = 1. First assume that the original invariant polytope algorithm 4.2.14 terminates
at depth N ∈ N with vertices V orig

N . Thus, by the invariance of co∗ V
orig
N , we have Ã co∗ V

orig
N ⊆

co∗ V
orig
N . By (4.4.14) and (4.4.13), there exists K ∈ N, K ≥ N , such that

co∗ V
orig
N = co∗

N⋃
n=0

ÃnV0 ⊆ co∗ V
mod
K ,

where V mod
K is the set of vertices constructed in the Kth iteration of the modified invariant

polytope algorithm 4.4.1. We claim that co∗ V
mod
K is an invariant polytope. By (4.4.15),

co∗ V
mod
K ⊆ co∗

K⋃
k=0

ÃkV0.

By the invariance property of the polytope co∗ V
orig
N and by K ≥ N ,

co∗

K⋃
k=0

ÃkV0 = co∗ V
orig
N .

It follows that co∗ V
orig
N = co∗ V

mod
K , and thus co∗ V

mod
K is an invariant polytope.

The other direction follows similarly. Let δ = 1. Assume that the modified invariant polytope
algorithm 4.4.1 terminates at depth N ∈ N with vertices V mod

N . Thus, by the invariance of

co∗ V
mod
N , we have Ã co∗ V

mod
N ⊆ co∗ V

mod
N . We denote by V orig

N the vertices constructed in the
N th iteration of the original invariant polytope algorithm 4.2.14. By (4.4.14),

co∗ V
orig
N = co∗

N⋃
n=0

ÃnV0.

We claim that co∗ V
orig
N is an invariant polytope. By the invariance property of the polytope

co∗ V
mod
N ,

co∗ V
mod
N ⊆ co∗

N⋃
n=0

ÃnV0 ⊆ co∗

N⋃
n=0

ÃnVN = co∗ V
mod
N .

It follows that co∗ V
orig
N = co∗ V

mod
N , and, therefore, co∗ V

orig
N is an invariant polytope.

(ii) Let 0 < δ < 1 and denote with ρc is the averaged spectral radius of the s.m.p.-candidates.
Assume that JSR(A) ≤ δ−1 · ρc or, equivalently by (4.4.3), JSR(Ã) < 1.

By Lemma 4.1.1, there exists a norm || · || such that
∣∣∣∣∣∣Ãj∣∣∣∣∣∣ < 1 for all j ∈ {1, . . . , J}. Thus,

applying the matrices Ãj several times to vectors v ∈ V0, we eventually map them to (co∗ V0)◦.
Note that the interior of co∗ V0 is non-empty due to Section 4.4.4. Hence, the modified invariant
polytope algorithm 4.4.1 eventually constructs an invariant polytope and terminates.

(iii) This we have shown in Lemma 4.4.9.
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4.5 Applications and numerical results

In this section we illustrate the modified Gripenberg algorithm 4.3.5 and the modified invariant
polytope algorithm 4.4.1 with numerical examples. For our tests we use matrices from standard
applications, as well as random matrices. Furthermore, we try to repeat tests which were
performed in similar papers [Moision, Orlitsky and Siegel, 2001; Blondel, Jungers and Protasov,
2006; Blondel and Chang, 2011, 2013; Guglielmi and Protasov, 2013, 2016].

The parameters for the fast algorithms are chosen such that they terminate after a reasonably
short time; i.e. less then few minutes. For the modified invariant polytope algorithm 4.4.1 the
input parameters are chosen such that the algorithm terminates at all, hopefully in shortest
time. We do not report the exact input parameters, since we believe they are of no value for
the reader. The tests are performed using an Intel Core i5-4670S@3.8GHz, 8GB RAM with the
software Matlab R2017a, t-packages v1.0 [Mejstrik, 2018b], JSR-Toolbox v1.2b [Hendrickx,
Jungers and Vankeerberghen, 2011], SeDuMi Toolbox v1.32 [Sturm, 1999] and Gurobi solver
v8.0 [Gurobi Optimization, 2018].

Remark 4.5.1. All matrix test sets are constructed with the function tgallery [Mejstrik,
2018b].

Modified invariant polytope algorithm 4.4.1

To summarize, we can say that the single-threaded modified invariant polytope algorithm 4.4.1
is roughly three times faster than the original invariant polytope algorithm. If the dimension of
the matrices is sufficiently large, the modified invariant polytope algorithm 4.4.1 scales nearly
linearly with the number of available threads. Thus, on a standard PC with 8 cores, the modified
invariant polytope algorithm 4.4.1 is roughly 25 times faster. More precisely

• for pairs of random matrices the modified invariant polytope algorithm 4.4.1 reports the
exact value of the JSR in reasonable time up to dimension 25, compared to dimension 20
for the original invariant polytope algorithm 4.4.1,

• for pairs of random matrices with non-negative entries the modified invariant polytope
algorithm 4.4.1 reports the exact value of the JSR in reasonable time up to dimension
3000, compared to dimension 1000 for the original invariant polytope algorithm 4.4.1,

• for Daubechies matrices the modified invariant polytope algorithm reports the exact value
of the JSR in reasonable time up to dimension 42, compared to dimension 20 for the
original invariant polytope algorithm 4.4.1, and

• for the binary matrices arising in the context of the computation of the capacity of codes
avoiding certain forbidden difference patterns, the algorithm works well only up to dimen-
sion 16.

Modified Gripenberg algorithm 4.3.5

The modified Gripenberg algorithm 4.3.5 finds in almost all cases an s.m.p.. Thus, for fast
estimates of the JSR, the modified Gripenberg algorithm 4.3.5 may be used independently.

Clearly, since the computation of the JSR is NP-hard, there are sets of matrices for which
algorithm 4.3.5 fails and we report mostly these cases together with a comparison with other
known algorithms: These are the random modified Gripenberg algorithm 4.3.5 described in
Remark 4.3.3, the Gripenberg algorithm itself, described in Section 4.3.1, the modified invariant
polytope algorithm 4.4.1, described in Section 4.3.2, and the genetic algorithm by Blondel and
Chang [2011], implemented by Chang [2018], which is a Monte Carlo algorithm.
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4.5 Applications and numerical results

At least in our test runs, the modified Gripenberg algorithm 4.3.5 performs best, in the sense
that in most cases it returns a correct s.m.p. faster than all other algorithms. More precisely,

• for long s.m.p.s the modified Gripenberg algorithm 4.3.5 performs best,

• for large sets of matrices the genetic algorithm and the modified invariant polytope algo-
rithm 4.4.1 perform best on average.

4.5.1 Randomly generated matrices

Matrices with normally distributed values We first illustrate the behaviour of the modified
invariant polytope algorithm 4.4.1 for pairs of matrices of dimensions 2 to 20 with normally
distributed values whose

(Test A) matrices have the same 2-norm,

(Test B) matrices have the same spectral radius, and

(Test C) matrices have the same spectral radius and δ = 0.99,

where δ is the parameter controlling the accuracy of the algorithm, see Section 4.4.3 (4.4.3).
We print the median values for these three examples, since there are always some outliers in
tests with δ = 1. The average values are roughly 100 times larger. We see in Figure 4.7 that
the modified invariant polytope algorithm 4.4.1 is applicable for pairs of random matrices up to
dimension 25, for which it takes roughly one weekend to terminate. For δ = 0.95 the modified
invariant polytope algorithm 4.4.1 is comparable to Gripenbergs algorithm and we do not print
the exact test results.

The test with the original invariant polytope algorithm with matrices of equal 2-norm shows
that the modified invariant polytope algorithm 4.4.1 produces polytopes with roughly twice as
many vertices; yet it still works for matrices of dimension 20, see [Guglielmi and Protasov, 2013,
Figure 2] .

J = 2, #test = 20, median values
(Test A) δ = 1 (Test B) δ = 1 (Test C) δ = 0.99

equal 2-norm equal spectral radius equal spectral radius
dim time #V time #V time #V

2 1.1 s 5·2 1.2 s 6·2 0.2 s 5·2
4 1.4 s 17·2 1.8 s 77·2 0.8 s 19·2
6 2.0 s 47·2 2.5 s 130·2 1.5 s 47·2
8 2.5 s 100·2 3.9 s 220·2 2.1 s 98·2
10 4.9 s 270·2 5.1 s 320·2 3.3 s 220·2
12 4.7 s 280·2 11 s 770·2 6.6 s 570·2
14 8.4 s 510·2 21 s 1100·2 12 s 800·2
16 25 s 1100·2 33 s 1400·2 25 s 1000·2
18 90 s 2100·2 200 s 2500·2 44 s 1600·2
20 295 s 3100·2 5000 s 6200·2 800 s 3900·2

Figure 4.7: Computation of the JSR with the modified invariant polytope algorithm 4.4.1 for
pairs of random matrices with equal 2-norm or equal spectral radius.
δ: accuracy parameter for the modified invariant polytope algorithm 4.4.1, dim: di-
mension of the matrices, #V : number of vertices of the invariant polytope, time: time
needed to compute the invariant polytope, J : number of matrices, #test: number of
test runs.
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Matrices with non-negative values Random matrices with non-negative entries are a worthy
test case, since the computation of the invariant polytope (i.e. the main loop in the modified
invariant polytope algorithm 4.4.1) always finishes after a few seconds, nearly regardless of the
dimension. Since the implementation tjsr [Mejstrik, 2018b] is not optimized for such high
dimensions, our implementation of the modified invariant polytope algorithm 4.4.1 still needs
some minutes to terminate, mostly due to the preprocessing steps (4.4.2) – (4.4.5).

For sparse matrices with non-negative entries, the modified invariant polytope algorithm 4.4.1
performs slightly worse; yet it is still applicable up to dimension 3000 or higher. Again, it is very
likely that the modified invariant polytope algorithm 4.4.1 still works for even larger matrices
if the implementation tjsr were optimized for such matrices, see Figure 4.8 for the results. We
again give the median values. The average values for these cases are roughly 10% higher.

A better benchmark with non-negative matrices is presented in Section 4.5.3.

J = 2, #test = 20, non-negative entries, equal spectral radius, median values
0% sparsity 90% sparsity 98% sparsity 99% sparsity

dim† time #V†† time #V†† time #V ††† time #V †††

20 0.3 s 7 1.7 s 42
50 0.3 s 8 1.6 s 50 2.2 s 50
100 0.4 s 8 0.8 s 25 17 s 1300
200 0.5 s 8 1.0 s 23 5.0 s 220 110 s 2600
500 1.2 s 8 1.8 s 16 7.7 s 90 26 s 310
1000 6.3 s 8 11 s 16 30 s 45 72 s 110
2000 35 s 8 72 s 16 35 s 8 290 s 64

Figure 4.8: Computation of the JSR with the modified invariant polytope algorithm 4.4.1 for
random pairs of matrices with non-negative entries and equal spectral radius.
dim: dimension of the matrices, J : number of matrices, #test: number of test runs.
time: time needed to compute the invariant polytope, #V : number of vertices of the
invariant polytope.
†Since the matrices are random, most of the sparse matrices have non-trivial invariant
subspaces which reduces the effective dimension of the matrices by roughly 10%.
††Most cones have 8 or 16 vertices, because the algorithm terminates after 3 or 4
iterations. The algorithm does not check whether all of these vertices are really in
the boundary of the polytope. ††† Note that the number of vertices decreases with
the dimension. We have no explanation for this phenomenon yet.

Matrices with equally distributed values In Figure 4.9 we see how the modified Gripenberg
algorithm 4.3.5 performs on random matrices. These matrices have equally distributed values
in [−5, 5] to mimic the test in [Blondel and Chang, 2011, Section 4.2]. Interestingly, the
genetic algorithm performs very badly, as does the random modified Gripenberg algorithm. The
modified Gripenberg algorithm 4.3.5 performs in the best possible way, i.e. it always finds an
s.m.p.. We report the success-rate in percent, i.e. how often the algorithms did find an s.m.p..

Remark 4.5.2. The random matrices for the tests in Figure 4.7 are generated with the function
tgallery('rand_gauss',dim,J,'norm') and tgallery('rand_gauss',dim,J,'rho'). The
command tgallery('rand_equal',dim,J,'pos','sparse',sparsity) generates the random
matrices for the tests in Figure 4.8.
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#tests = 100, equal spectral radius
J = 2, dim = 2 J = 4, dim = 4 J = 8, dim = 8

Algorithm success time success time success time

mod. invariant polytope 100% 1.1 s 100% 4.3 s 100% 40.0 s
mod. Gripenberg 100% 1.9 s 100% 4.1 s 100% 5.4 s
random Gripenberg 100% 1.8 s 99% 3.8 s 82% 4.3 s
Gripenberg 100% 3.8 s 100% 20.3 s 100% 82.1 s
brute force 100% 180 s 98% 180.0 s 74% 180.0 s
genetic 100% 7.1 s 97% 9.3 s 87% 12.0 s

Figure 4.9: Performance of the modified Gripenberg algorithm 4.3.5 for sets of random matrices
with equally distributed values and equal spectral radius.
dim: dimension of the matrices, J : number of matrices, success: percentage of how
often a correct s.m.p. is found. #test: number of test runs. time: time needed by
the algorithm.

4.5.2 Handpicked generic matrices

Example 4.5.3. Let

X1 =


15

92

−73

79
56

59

89

118

 , X2 =


−231

241

−143

219
103

153

−38

65

 .
The set X = {X1, X2} has an s.m.p. of length 119 with averaged spectral radius JSR(X ) '

1.01179. The Gripenberg algorithm finds an s.m.p. after an evaluation of ∼630.000 products,
taking roughly ten minutes. Both the modified Gripenberg algorithm 4.3.5, as well as the genetic
algorithm fail. The modified invariant polytope algorithm 4.4.1 finds an s.m.p. in less than one
minute. The test results are in Figure 4.10 (left side). The invariant polytope constructed by
the modified invariant polytope algorithm 4.4.1 can be seen in Figure 4.10 (right side). 4

Remark 4.5.4. The command tgallery(’mejstrik 119’) generates the set X .

Test set Algorithm Lower bd. time

X mod. invariant polytope 1.01179 . . . 40 s
J = 2 mod. Gripenberg 1.01130 . . . 4 s
dim = 2 random Gripenberg 1.01172 . . . 10 s

Gripenberg 1.01179 . . . 580 s
genetic 1.01130 . . . 8 s

Figure 4.10: Left side: For the test set X from Example 4.5.3 all fast algorithms fail, since they
do not find a correct s.m.p..
dim: dimension of the matrices, lower bd.: computed lower bound for the JSR,
J : number of matrices, time: time needed by the algorithm.
Right side: Invariant polytope constructed for the set X .
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Example 4.5.5 is of interest because it is a rather simple family of two matrices with arbitrary
long s.m.p.s.

Example 4.5.5. Let n ∈ N, C0 =

[
1 1
0 1

]
and Cn =

[
0 0

1
ne

1+ 1
n 0

]
. We show in Section 4.6

that JSR(Cn) = ρ(Cn0Cn)1/(n+1) = e1/n for Cn = {C0, Cn}.
The genetic algorithm fails for most matrices of this family. All other algorithms report the

correct s.m.p. in less than 5 s. The test results are in Figure 4.11. 4

Test set Algorithm Lower bd. time

C15 mod. invariant polytope 1.0689 . . . 1.7 s
J = 2 mod. Gripenberg 1.0689 . . . 3.3 s
dim = 2 random Gripenberg 1.0689 . . . 3.2 s
s.m.p. = C15

0 C15 Gripenberg 1.0689 . . . 0.1 s
genetic 1.0689 . . . 7.0 s

C30 mod. invariant polytope 1.0338 . . . 2.5 s
J = 2 mod. Gripenberg 1.0338 . . . 4.0 s
dim = 2 random Gripenberg 1.0338 . . . 4.3 s
s.m.p. = C30

0 C30 Gripenberg 1.0338 . . . 0.1 s
genetic 1.0215 . . . 6.6 s

C60 mod. invariant polytope 1.0168 . . . 4.0 s
J = 2 mod. Gripenberg 1.0168 . . . 3.1 s
dim = 2 random Gripenberg 1.0168 . . . 4.3 s
s.m.p. = C60

0 C60 Gripenberg 1.0168 . . . 0.1 s
genetic 1.0000 . . . 6.3 s

Figure 4.11: For the test sets Cn from Example 4.5.5 the genetic algorithm mostly fails.
dim: dimension of the matrices, lower bd.: computed lower bound for the JSR,
J : number of matrices, s.m.p.: an s.m.p., time: time needed by the algorithm

Remark 4.5.6. The command tgallery(’mejstrik Cn’,n) generates the sets Cn from Ex-
ample 4.5.5.

4.5.3 Capacity of codes with forbidden difference sets

In some electromagnetic recording systems, the bit error rate is often dominated by a small set
of certain forbidden difference words D. Thus, one needs to construct sets of allowed words
all of whose possible differences do not yield such a forbidden word. Clearly, one wants codes
with few constrains on the possible words. We are interested in how constraining a given set of
forbidden difference words D is, which we denote as the capacity capD ∈ [0, 1] which we define
next. The larger the capacity, the better.

Definition 4.5.7 ([Moision, Orlitsky and Siegel, 2001, Section 3], [Blondel, Jungers and Pro-
tasov, 2006, Section V]). Let K ∈ N.

(i) We define a word (of length n ∈ N) as a vector in {0, . . . ,K}n. The concatenation
of two words u ∈ {0, . . . ,K}nu , v ∈ {0, . . . ,K}nv , nu, nv ∈ N, is denoted by uv ∈
{0, . . . ,K}nu+nv .

(ii) For two words u, v ∈ {1, . . . ,K}n, we define the difference by u − v ∈ {−K, . . . ,K}n. A
set of forbidden differences is D ⊆ {−K, . . . ,K}n, n ∈ N, is a finite set of difference words.
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4.5 Applications and numerical results

(iii) By δn(D), n ∈ N, D ⊆ {−K, . . . ,K}m, m ∈ N, we denote the largest cardinality of sets of
words of length n whose differences avoid the forbidden differences in D, i.e. for n ∈ N,

δn(D) = max
{

#W ⊆ {0, . . . ,K}n : w1 − w2 6= udv

for all w1, w2 ∈W, d ∈ D, u, v ∈ {0, . . . ,K}n
}
.

(iv) The capacity cap(D) of D is defined by

cap(D) = logK+1 lim
n→∞

δn(D)

n
. (4.5.1)

(v) For sets of forbidden differences, we use the abbreviations − = −1, ◦ = 0, + = 1.
Furthermore, we use the additional symbol ± meaning that whenever the symbol ± occurs,
both occurrences of + and − are forbidden at that particular location.

In the following, we will always assume that K = 1.
For a given set of forbidden differences, the problem of computing its capacity (4.5.1) can be

translated to the computation of the JSR of a finite set of matrices, see e.g. for details [Moision,
Orlitsky and Siegel, 2001]. ForK = 1, the occurring matrices in this application only have entries
in {0, 1}, however, their dimension, as well as the number of matrices increases exponentially
with the length of the forbidden difference words.

Example 4.5.8. For D3 = {+◦+◦ }, by [Moision, Orlitsky and Siegel, 2001], the capacity of
D3 is given by:

cap(D3) = log2 JSR
({

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

,


0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0

 ,


0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

 ,


0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0

 ,


0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1

 ,


0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0

,


0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1

 ,


0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0

 ,


1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

 ,


1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0

 ,


1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

,


1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0

 ,


1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1

 ,


1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0

 ,


1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1

 ,


1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0


})

. 4

We use the modified invariant polytope algorithm 4.4.1 to compute the capacities for the
forbidden differences from [Moision, Orlitsky and Siegel, 2001, page 10], [Blondel and Chang,
2011, Figure 1] and [Blondel, Jungers and Protasov, 2006, page 6 and Section v]. Nearly any
of these capacities were known exactly before. The test results, together with the computed
capacities are printed in Figure 4.12.

The difference set D4 = {◦ ◦+◦−}, taken from [Blondel and Chang, 2011, Figure 1], is
an interesting test case for the modified Gripenberg algorithm, since the computation of the
capacity translates to the JSR of a set with 256 matrices of dimension 16. As one can expect, the
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4 Joint spectral radius

D s.m.p. cap(D) #V J dim

±± B2B3 1/2 3 · 2 4 2

◦± B3 0 2 · 2 4 2

◦+− B4B1 0.6942 . . . 45 · 2 4 4

◦±± B1B2 1/2 37 · 2 16 4
±±± B6B4B1 2/3 19 · 2 16 4
+−+− B1B2 0.9468 . . . 86 · 2 2 8
+++− B3

1B
3
2 0.9005 . . . 40 · 2 2 8

++++ B1 0.9468 . . . 84 · 2 2 8

◦+−+ B3 0.8791 . . . 43 · 2 4 8

◦++− B2
1B

2
4 0.8113 . . . 46 · 2 4 8

◦+++ B1 0.8791 . . . 46 · 2 4 8

◦++± B2
1B

2
2 0.7396 . . . 244 · 2 16 8

◦+◦+ B4B
2
11B13B

2
6 0.7298 . . . 804 · 2 16 8

±±±± B86B52B16B1 3/4 357 · 2 256 8

◦+−+◦ B11B13 0.9163 . . . 1721 · 2 16 16

◦+++◦ B4B6 0.9163 . . . 4559 · 2 16 16

+++++−◦ B3 0.9761 . . . 992 · 2 4 64

Figure 4.12: Capacity of various difference sets D.
D : set of forbidden differences, cap(D): capacity of D, dim: dimension of the ma-
trices, J : number of matrices, #V : number of vertices of the invariant polytope,
s.m.p.: an s.m.p..

Gripenberg algorithm fails to find an s.m.p., also the modified Gripenberg algorithm 4.3.5 fails.
The genetic algorithm in most runs finds a better product than the one found by the Gripenberg
algorithm. The modified invariant polytope algorithm 4.4.1 also finds this better product after a
while, however, it does not terminate in reasonable time. Thus, the exact capacity, and whether
an s.m.p. exists or not, is still unknown. The test results are in Figure 4.13.

Test set Algorithm lower bd. time

D4 = {◦◦+ ◦−} mod. invariant polytope 1.6736 . . . 40 s
J = 265 mod. Gripenberg 1.6663 . . . 2 s
dim = 16 random Gripenberg 1.6663 . . . 2 s

Gripenberg 1.6663 . . . 60 s
genetic 1.6736 . . . 10 s

Figure 4.13: The modified Gripenberg algorithm 4.3.5 fails for the set of matrices corresponding
to the forbidden difference set D4 in Section 4.5.3.
dim: dimension of the matrices, lower bd.: computed lower bound for the JSR,
J : number of matrices, time: time needed by the algorithm.

Remark 4.5.9. The exact computation of the capacity using the modified invariant polytope al-
gorithm 4.4.1 is only possible if we use the estimates for the Minkowski norm in Lemma 4.4.6 (v),
which reduces the number of norms to be computed by a factor of 100.

The function codecapacity [Mejstrik, 2018b] implements an algorithm by [Moision, Orlitsky
and Siegel, 2001, Section IV], returning the set of matrices needed for the JSR computation of
the capacity of a set of forbidden differences. It works for reasonably small difference sets, and
theoretically for difference words with entries in {−K, . . . ,K}, K ∈ N. In practice it fails for
K ≥ 3, due to memory limitations.
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4.5.4 Hölder exponents of Daubechies wavelets

An important application of the JSR is the computation of the regularity of refinable functions, as
described in Chapter 3. We use the modified invariant polytope algorithm 4.4.1 to compute the
Hölder regularity of the Daubechies wavelets Dn [Daubechies, 1988]. The regularity of D2, D3,
and D4 was computed by Daubechies and Lagarias [1992b], Gripenberg [1996] computed it for
D5, . . . , D8, then Guglielmi and Protasov [2016], as a demonstration of the invariant polytope
algorithm, computed the regularities of D9, . . . , D20. Now with the modified invariant polytope
algorithm 4.4.1 we can compute the Hölder regularity for Daubechies wavelets up to D42.

As noted in [Guglielmi and Protasov, 2016, Section 6.2], the polytopes generated by these
matrices are very flat and the introduction of nearly-s.m.p.s and extra-vertices increases the
performance of the invariant polytope algorithm 4.4.1 tremendously. In other words, using the
wrong set of nearly-s.m.p.s, the algorithm does not terminate at all for some examples. These
cases are marked with † in Figure 4.15. Working nearly-s.m.p.s and extra-vertices were merely
found by trial and error.

We report the number of extra-vertices and the vertices of the cyclic roots from the nearly-
s.m.p.s together under #Extra-V. The number of the vertices of the invariant polytopes is printed
in Figure 4.14 (left side).

Remark 4.5.10. With the new regularity values for D21 to D42, we can refine the observation
in [Guglielmi and Protasov, 2015], that the differences of Hölder regularities αn −αn−1 seem to
converge towards a value of 0.21 or maybe even 0.2, see Figure 4.14 (right side).

Figure 4.14: Left: Number of vertices of the invariant polytope #V against index n of Dau-
bechies wavelet Dn. Right: Difference of regularities α of consecutive Daubechies
wavelets Dn.

Remark 4.5.11. The function daubechiesmask [Mejstrik, 2018b] returns the mask coefficients
of the Daubechies scaling functions. The function daubechiesmatrix [Mejstrik, 2018b] returns
the transition matrices constructed from the mask coefficients, whose JSR determines the Hölder
regularity of the Daubechies wavelets.
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n s.m.p. #Extra-V #V time α

2 B0 0 0·2 < 5 s 0.55001 . . .
3 B0 0 3·2 < 5 s 1.08783 . . .
4 B0 2 9·2 < 5 s 1.61793 . . .
5 B0 and B1 2 14·2 < 5 s 1.96896 . . .
6 B0 and B1 3 18·2 < 5 s 2.18914 . . .
7 B0 and B1 4 27·2 < 5 s 2.46041 . . .
8 B0 and B1 5 40·2 < 5 s 2.76082 . . .
9 B0 and B1 6 55·2 < 5 s 3.07361 . . .
10 B2

0B
2
1 5 147·2 < 5 s 3.36139 . . .

11 B0 and B1 8 123·2 7 s 3.60347 . . .
12 B0 and B1 9 91·2 7 s 3.83348 . . .
13 B0 and B1 10 105·2 6 s 4.07348 . . .
14 B0 and B1 11 134·2 8 s 4.31676 . . .
15 B4

0B
2
1 11 386·2 6 s 4.55612 . . .

16 B2
0B

2
1 12 346·2 7 s 4.78644 . . .

17 B0 and B1 14 324·2 5 s 5.01380 . . .
18 B0 and B1 15 282·2 8 s 5.23917 . . .
19 B0 and B1 16 346·2 9 s 5.46532 . . .
20 B0 and B1 17 529·2 12 s 5.69108 . . .
21 B2

0B
2
1 17 868·2 15 s 5.91500 . . .

22† B2
0B

4
1 22 433·2 9 s 6.13779 . . .

23 B0 and B1 20 707·2 18 s 6.35958 . . .
24 B0 and B1 21 701·2 16 s 6.58096 . . .
25 B0 and B1 22 861·2 20 s 6.80198 . . .
26 B4

0B
2
1 22 2471·2 73 s 7.02250 . . .

27 B2
0B

2
1 29 2952·2 60 s 7.24241 . . .

28† B2
0B

6
1 105 777·2 24 s 7.46187 . . .

29 B0 and B1 26 1545·2 39 s 7.68091 . . .
30 B0 and B1 27 2078·2 64 s 7.89962 . . .
31 B0 and B1 29 2898·2 190 s 8.11801 . . .
32 B2

0B
2
1 29 3791·2 760 s 8.33605 . . .

33† B2
0B

2
1 30 4692·2 1330 s 8.55379 . . .

34 B0 and B1 32 3047·2 628 s 8.77123 . . .
35 B0 and B1 33 3191·2 727 s 8.98841 . . .
36 B0 and B1 34 3887·2 881 s 9.20533 . . .
37 B6

0B
2
1 70 8529·2 6503 s 9.42202 . . .

38 B2
0B

2
1 38 6035·2 3540 s 9.63847 . . .

39 B2
0B

4
1 40 7142·2 3900 s 9.85474 . . .

40 B0 and B1 38 6909·2 5550 s 10.07073 . . .
41 B0 and B1 39 8343·2 8743 s 10.28656 . . .
42 B0 and B1 40 9508·2 16373 s 10.50220 . . .

Figure 4.15: Hölder regularity of Daubechies wavelets.
α: Hölder regularity of the Daubechies wavelet Dn, n: index of the Daubechies
wavelet Dn, #V : number of vertices of the invariant polytope, #Extra-V : number
of extra-vertices including those from nearly-s.m.p.s., s.m.p.: an s.m.p., time: time
needed to compute the invariant polytope.
†: See explanation in Section 4.5.4.
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4.6 Appendix

4.6 Appendix for Chapter 4

Proof for Example 4.5.3. Define C̃n =

[
0 0
n 0

]
, n > 0. A product of C0 =

[
1 1
0 1

]
and C̃n is

non-zero if and only if it is of the form C l10 C̃nC
l2
0 C̃n · · · C̃nC

lM
0 , lm ∈ N, m ∈ {1, . . . ,M}. Since

the spectral radius does not change under cyclic permutations, we can assume that the product
is of the form C l10 C̃nC

l2
0 C̃n · · ·C

lM
0 C̃n, lm ∈ N, m ∈ {1, . . . ,M}, M ∈ N. Note that for M ≥ 2

we can assume that
lm ≥ 2 for at least one m ∈ {1, . . . ,M} , (4.6.1)

since otherwise lm = 1 for all m ∈ {1, . . . ,M} and thus we could reduce the product to the form

C l10 C̃n. A straightforward computation gives for lm ∈ N, m ∈ {1, . . . ,M}, that C lm0 =

[
1 lm
0 1

]
,

and thus C lm0 C̃n = n

[
lm 0
1 0

]
, from which it follows that

C l10 C̃n · · ·C
lM
0 C̃n = nM

[
l1 · · · lM 0
l2 · · · lM 0

]
.

Since the length of this product is equal to l1 + · · · lM +M the averaged spectral radius of this
product is (nM l1 · · · lM )1/(M+l1+···lM ). We define P = nM l1 · · · lM and S = M + l1 + · · · lM . Note
that P 6= 1 by (4.6.1). Taking the total derivative D of P 1/S with respect to (l1, . . . , lM ) and
setting it to zero we obtain

D(P 1/S) =
P 1/S

S2

 l
−1
1 (S − l1 logP )

...

l−1
M (S − lM logP )


T

= 0.

Thus, S = lm logP or, equivalently, S/ logP = lm, m ∈ {1, . . . ,M}. It follows that all lm,
m ∈ {1, . . . ,M}, must be equal. Therefore, the averaged spectral radius of all finite products is
maximized with a product of the form C l0C̃n, l ∈ N, whose averaged spectral radius is equal to
nl1/(1+l). For fixed l ∈ N this term has its maximum at

l1/(1+l)n(1 + l − l log nl)

l(1 + l)2
= 0

which yields n = 1
l e

(1+l)/l. Thus, C l0C̃n is the product with largest averaged spectral radius under

all finite products or, equivalently, with Cn =

[
0 0

1
ne

1+ 1
n 0

]
, n ∈ N, the product Cn0Cn has largest

averaged spectral radius under all finite products with matrices from the set C = {C0, Cn}.
Using (4.1.3) we conclude that JSR(C) = ρ(Cn0Cn)1/(n+1) = (e(n+1)/n)1/(n+1) = e1/n.

Theorem 4.6.2 (Fekete’s Lemma, [Fekete, 1923]). If (an)n∈N ∈ `(N) is sub-additive, i.e.

an+m ≤ an + am for all n,m ∈ N, (4.6.2)

then
lim
n→∞

an
n

= inf
n∈N

an
n
.

Proof. Let

A = inf
n∈N

an
n
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4 Joint spectral radius

and B ∈ R such that B > A. Choose b ∈ N such that ab
b < B. For all n ∈ N, n ≥ k there

exist pn, qn ∈ N such that n = pnb + qn and 0 ≤ qn ≤ b − 1. By applying (4.6.2) we obtain
an = apnb+qn ≤ apnb + aqn ≤ pnab + aqn , and thus

an
n
≤ bpn

n

ab
b

+
aqn
n
,

When n goes to infinity, pnb
n converges to 1 and

aqn
n converges to 0. Therefore, we have for all

B > A
A ≤ lim

n→∞

an
n
≤ ab

b
< B.

Finally, letting B going to A we obtain A = infn∈N
an
n = limn→∞

an
n .

Fekete’s Lemma also applies to sub-multiplicative sequences.

Corollary 4.6.3. If (an)n∈N ∈ `(N,R+) is sub-multiplicative, i.e.

an+m ≤ anam for all n,m ≥ 1,

then
lim
n→∞

n
√
an = inf

n∈N
n
√
an.

Proof. If aN = 0 for any N ∈ N, then an = 0 for all n ≥ N , and thus limn→∞ n
√
an =

infn∈N n
√
an = 0.

So, we suppose an > 0 for all n ∈ N. Since (log an)n∈N is a sub-additive sequence, by The-

orem (4.6.2), infn∈N log
(
a

1/n
n

)
= limn→∞ log

(
a

1/n
n

)
. Using that the logarithm is continuous,

the claim follows.
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4.6 Appendix

Algorithm 4.6.1. Simple implementation of the modified Gripenberg algorithm 4.3.5 in Mat-
lab.

function [ c ] = gripenberg_modified( M, N, D )

%Tries to find smp-candidates in a fast way.

% M input matrices

% N number of products kept in each step

% D maximal length of products to be computed

%Ex: gripenberg_modified( { [ 2 1; 0 -2 ], [ 2 1; -1 -2 ] }, 4, 10 )

J = length(M); %number of matrices

o = 1:J; %the orderings of the products to be checked

c = {}; %list of candidates

r = 0; %lower bound for JSR

for d = 1:D %do D iterations

NR = zeros(2,size(o,2)); %norm and rho of candidates

for i = 1:size(o,2) %can be parallelised using parfor!

P = buildProduct(M,o(:,i)); %construct matrices

NR(:,i) = [ norm(P); max(abs(eig(P))) ]; %compute norm and rho

end

NR = NR.^(1/d); %average norm and rho

if r < max(NR(2,:)) %test if new bound was found

c = {}; %delete candidates

r = max(NR(2,:)); %update lower bound for JSR

end

c = [ c num2cell(o(:,NR(2,:) >= r),1) ]; %add candidates

idx = NR(1,:) < r; %remove products with norm less than JSR

NR(:,idx) = [];

o(:,idx) = [];

[NR,idx] = sortrows(NR'); %sort correspdonding to norm

NR = NR.'; idx = idx.'; nNR = size(NR,2);

if nNR > 2*N %keep highest and lowest norms

o = o(:,[ idx(1:N) idx(nNR-N+1:nNR) ]);

else %keep everything if N is too big

o = o(:,idx);

end

o = [repmat(o,[ 1 J ]); %make new orderings of products

reshape(repmat(1:J,[ size(o,2) 1 ]),1,[])];

end

function [ M ] = buildProduct( A, prod )

% Constructs the product of matrices of A corresponding to prod.

M = eye(size(A{1},1));

for t = 1:length(prod);

M = A{prod(t)}*M;

end
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5 Appendix

Theorem 5.0.1 proofs Conjecture 3.3.4.

Theorem 5.0.1. If SN is convergent, then there exists a unique, with respect to inclusion,
minimal set Ω ⊆ Zs such that `(Ω) is T invariant.

Proof. Assume the contrary. Then there exist sets Ω1,Ω2 ⊆ Zs, finite, such that `(Ω1), `(Ω2)
are T -invariant. In particular, the set Ω = Ω1 ∪ Ω2 is T -invariant and the transition matrices
Td,j,Ω, d ∈ Dj , j ∈ {1, . . . , J}, have the form

Td,j,Ω =

[
Td,j,Ω1 0

0 Td,j,Ω2

]
.

Both matrices Td,j,Ω1 , Td,j,Ω2 have an eigenvalue 1. Thus, Td,j,Ω has an eigenvalue 1 whose
corresponding eigenvector is not simple. But, by the uniqueness of the basic limit functions,
Proposition 3.1.13 (vi), the eigenvector to the eigenvalue 1 of the transition matrices of conver-
gent subdivision schemes is unique, which is a contradiction.
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Source code

The source code of all mentioned programs may be found

• at the personal homepage of the author: tommsch.com/science.php, or

• at the Matlab File Exchange: mathworks.com/matlabcentral/fileexchange, or

• at the thesis-repository of the University of Vienna: othes.univie.ac.at, or

• comes together with this thesis on this page.
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Glossary

Absolutely convex hull 64,
Alma 66,
Assumption S 29,
Attractor 16,
Averaged norm of a matrix product 61,
Averaged spectral radius of a m. p. 61,

Backward difference operator 41,
Balancing of cyclic roots 68, 76,
Basic limit function 30,
blf 34,
Bold font , Zeroth entry in sequences 13,

Capacity of codes 88,
Cases (P), (R), (C) 67,
checktile 25,
Child of a vertex 66,
codecapacity 90,
Complex convex hull 64,
computepolytopenorm 65,
Cone hull 64,
Conjecture
constructdigit 18,
constructOmega 37, 57,
constructV 50,
constructVt 50,
Convergent subdivision scheme 28,
Cyclic root → Cyclic root 67,

daubechiesmask 91,
daubechiesmatrix 91,
Degree of a polynomial sequence 42,
Difference subdivision operator and scheme 42,
Difference word 88,
diffsequence 42,
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dimVVt 50,
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Double dragon (tile) 17,
Dual leading eigenvector 68,
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Expansion, Digit expansion 16,
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Extremal norm 63,

findsmp 74,
Finite set of subdivision operators 27,
Forbidden differences 88,
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Gerry
getS 56,
Gripenberg algorithm 71,
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Invariant Omega algorithm 37, 57,
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Irreducible matrices 63,

Joint spectral radius, JSR 15, 59,
Jointly expanding matrices 16,

Leading eigenvalue and eigenvector 66,
leadingeigenvector

Length of a multi index 12,
Length of a matrix product 61,
Linear programming, LP 13,

Mask, Subdivision mask 27,
Matrix approach, JSR approach 10,
Minkowski norm 64,
Modified Gripenberg algorithm 95,
Modified invariant polytope algorithm
Multi index notation 12,
Multiple subdivision 10, 27,
Mutually refinable functions 32,

Natural selection → Darwin 78,
Nearly s.m.p. 70,

Operator approach, RSR approach 10,
Orthant monotonic 80,

Parent → Olga, Thomas 66,
Polynomial sequence 42,

Random modified Gripenberg algorithm 72,
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Glossary

Refinement equation 32, 39,

Restricted norm 45,

Restricted spectral radius, RSR 45,

restrictmatrix 56,

S.m.p.-candidate 67,

Shifted sequence 20,

Simplified polytope 79,

Spectral maximizing product, s.m.p. 61,

Stationary subdivision 9,

Subdivision operator and subdivision scheme
27,

Sum rules 29,

Supertile 36,
Symmetrized convex hull 64,

tgallery 84,
Tile 22,
tile 17, 36,
tjsr 74,
Transition matrix 36,
Transition operator 34,
transitionmatrix 37,

Unique leading eigenvector 66,

Word, don’t come easy 88,
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Symbols

| · | Absolute value → Multi index notation 12,
∗ Conjugate transpose, M∗ = M̄T

∂ Boundary of a set 12,
[ · ] Denotes sequences, matrices or intervals 13,
∅ Empty set 12,
4 End of an example 13,
! Factorial 12,
b · c Floor function 13,
# Cardinality of a set 12,
( · , · ) Inner product, (x, y) =

∑
α∈Zs x(α)y(α) 13,

◦ Interior of a set 12,

|| · ||1/k Averaged norm with respect to the length of a matrix product 61,
|| · ||`p , || · ||p `p-Norm 13,

|| · |∇k+1 ||∞ Restricted norm 45,
|| · ||P Minkowski norm with respect to a set P ⊆ Rs 64,
− , ◦ , + , ± Numbers −1, 0, +1, ±1 used in difference words 89,
+, −, ± Usual operators for numbers or the pairwise sum of sets 12,
' Either isomorphic (for spaces), essentially equal (for sets with re-

spect to the Lebesgue measure) or approximately equal (for num-
bers) 13,

⊆, $, * Subset or equal, Strict subset, Not a subset 12,
Y X Sequence space 13,
4 ∞ 27,
a Usually the mask of a subdivision operator, a ∈ `0(Zs) 27,
a∗(z) Symbol, the Laurent polynomial corresponding to a sequence a,

a∗(z) =
∑

α∈Zs a(α)zα, z ∈ Cs \ {0} 49,
a′ Usually the mask of a difference subdivision operator, a′ ∈

`0(Zs,R(s+ks−1)) 42,
absco Absolutely convex hull 64,
An Set of matrix products of length n with matrices from A 12,
bk+1 Intermediate bound for the JSR 81,
C Complex numbers 12,
Cα Hölder continuous functions with Hölder regularity α 13,
c Usually the starting sequence for a subdivision scheme, c ∈ `(Zs)

28,
cap Capacity of a difference set 88,
cl Closure of a set 12,
co, co−, cos Convex hull, Cone hull with respect to the first orthant, Sym-

metrized convex hull 64,
co∗ Any of the following: co, cos, absco, co− 64,
D Usually a digit set 17,
d Usually an element from a digit set
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Symbols

DD The double dominant double dragon 17,
.d1d2 . . . Expansion of a number with digits dn 16,
gc, j , gc Limit function of a subdivision scheme 28,
el The lth standard unit vector of Rs 13,
h Hausdorff metric, h(B,C) = max{supb∈B infc∈C ||b− c||2 , supc∈C

infb∈B ||b− c||2} 16,
H Space of all non-empty, compact subsets of K, K ⊆ Rs, with the

Hausdorff metric h 16,
H Cyclic root for the (modified) invariant polytope algorithm 67,
I Identity matrix 13,
J Usually the number of matrices Mj , subdivision operators Sj or

matrices Aj . 16, 27, 59,
j Index sequence, usually for the operators in the set S 28,

j[r] Shifted sequence j[r] = (jr, jr+1, jr+2, · · · ) 20,
JSR Joint spectral radius of a set of matrices 15,
k Usually the order of sumrules or the degree of a polynomial 29, 41,

42, 46,
KQ, j Attractor corresponding to dilation matrices Mj ∈ Zs×s, finite sets

Qj ⊆ Zs and ordering j ∈ {1, . . . , J}N 16,
l Usually the running index of the dimension, l ∈ {1, . . . , s} 13,
l( · ) Length of a matrix product 61,
` Sequence space 13, 35,
M Usually the dilation matrix used for subdivision, ρ(M−1) < 1 27,
Mη Sequences whose corresponding matrix products have uniformly av-

eraged spectral radii less than η 82,
N The positive integers excluding zero 12,
N0 The positive integers including zero 12,
Q The rational numbers 12,
.q1q2 . . . Expansion of a number with digits qn 16,
r Usually the starting index in a subdivision scheme, r ∈ N 32,
R+ The positive real numbers including zero 12,
R The real numbers 12,
RI×J , RΩ Generalized matrix notation 13,
RSR Restricted spectral radius of a set of difference subdivision operators

45,
S Subdivision operator, S = (a,M), Sc =

∑
β∈Zs a( · −Mβ)c(β) 27,

s Usually the dimension 13,
S′ Difference subdivision operator S′ = (a′,M) to the corresponding

subdivision operator S = (a,M) 42,
(Sjn)n∈N Subdivision scheme, (Sjn)n ∈ SN 27,
s.m.p. Spectral maximizing product 61,
span Linear span of a finite set of vectors 13,
S ′ Finite set of difference subdivision operators corresponding to the

subdivision operators in S 42,
S Finite set of subdivision operators 27,
supp Support of a sequence 13,
Td,j Transition operator corresponding to the subdivision scheme Sj =

(aj ,Mj) and digit d ∈ Dj ' Zs/MZs, Td,jc =
∑

β∈Zs aj(Mj · − β +
d)c(β), c ∈ `(Zs) 34,

104



Symbols

T Set of transition operators 34,
Td,j,Ω Transition matrix corresponding to the subdivision scheme Sj and

digit d ∈ Dj restricted to the space `(Ω), Td,j,Ω =
[
aj(Mjα − β +

d)
]
α,β∈Ω

36,

Vk Space orthogonal to Πk, Vk(Ω) = {v ∈ `(Ω) :
∑

β∈Ω v(β)p(−β) =
0 for all p ∈ Πk} 46,

Ṽk Space spanned by difference sequences, Ṽk(Ω) = span{∇̃µ δ( · −β) ∈
`(Zs) : β ∈ Zs, µ ∈ Ns0, |µ| = k + 1, supp v ⊆ Ω} 46,

Xµ Index set for difference sequences 47,
Z The integers 12,
zM → Multi index notation 12,
α, β Usually indices in Zs 13,
δ Usually the Kronecker delta 13,
δn Biggest cardinality of a set which avoids forbidden differences 88,
λ ( · ) Lebesgue-measure of a set 12,
µ Usually used for the superscript in the backward difference operator

∇̃µ 41,
µ, ν Usually used as multi-indices 12,
∇ Backward difference operator, ∇l c = c − c ( · − el), ∇ =[

∇1 ∇2 . . . ∇s
]T

, ∇̃µ =
∏s
l=1(∇l )µl with µ ∈ Ns0, ∇k+1 is

the column vector of all possible backward differences ∇̃µ with
|µ| = k + 1 41,

ΩC Minimal Td,j invariant set containing 0 ∈ Zs 36,
ΩR Supertile corresponding to the sets supp aj −Dj , j ∈ {1, . . . , J} 35,

ΩV Td,j invariant set such that Vk(Ω) = Ṽk(Ω) for all k ∈ N0, Xµ 6= ∅
for all |µ| = k + 1 36,

ΩZ ΩR ∩ Zs 35,
Ω Usually Td,j invariant set 36,
φ j Basic limit function, φ j[r] =

∑
α∈Zs ajr(α)φ j[r+1](Mjr · − α) 30,

Πk Space of polynomial sequences of degree k ∈ Ns0 42,
ρ Spectral radius of a matrix 13,

ρ( · )1/k Averaged spectral radius of a matrix product of length k ∈ N 61,
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Abstract

This thesis extends the matrix based approach to the setting of multiple subdivision schemes
studied in [Sauer, 2012]. Multiple subdivision schemes, in contrast to stationary and non-
stationary schemes, allow for level dependent subdivision weights and for level dependent choice
of the dilation matrices. The latter property of multiple subdivision makes the standard def-
inition of the transition matrices, crucial ingredient of the matrix approach in the stationary
and non-stationary settings, inapplicable. We show how to avoid this obstacle and characterize
the convergence of multiple subdivision schemes in terms of the joint spectral radius of certain
square matrices derived from subdivision weights.

Albeit the characterization of the convergence of multiple subdivision schemes in terms of the
joint spectral radius is elegant, the numerical computation of the joint spectral radius still poses
big problems. In several papers of 2013 – 2016, Guglielmi and Protasov made a breakthrough
in the problem of the joint spectral radius computation, developing the invariant polytope al-
gorithm, which for most matrix families finds the exact value of the joint spectral radius. This
algorithm found many applications in problems of functional analysis, approximation theory,
combinatorics, etc.. In this thesis we propose a modification of the invariant polytope algorithm
making it roughly three times faster and suitable for higher dimensions. The modified version
works for most matrix families of dimensions up to 25, for non-negative matrices the dimension
is up to 3000.

Besides, we introduce a new, fast algorithm for computing good lower bounds for the joint
spectral radius, which finds in most cases the exact value of the joint spectral radius in less than
5 seconds. Corresponding examples and statistics of numerical results are provided.
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Zusammenfassung

Die vorliegende Arbeit verallgemeinert die Matrix-Methode für die Konvergenzanalyse von Un-
terteilungsalgorithmen auf multiple Unterteilungsalgorithmen, wie sie von Sauer [2012] eingeführt
wurden. Multiple Unterteilungsalgorithmen erlauben, anders als stationäre und nicht-stationäre
Unterteilungsalgorithmen, level-unabhängige Verfeinerungsgewichte und Verfeinerungsmatrizen.
Letztere Eigenschaft erfordert eine neue Definition der Übergangsmatrizen, welche ein grundle-
gendes Objekt der Matrix Methode darstellen. Wir zeigen wie Übergangsmatrizen im multiplen
Rahmen konstruiert werden und charakterisieren über den gemeinsamen Spektralradius dieser
Matrizen die Konvergenz von multiplen Unterteilungsalgorithmen.

Die Charakterisierung der Konvergenz von multiplen Unterteilungsalgorithmen mittels Über-
gangsmatrizen ist zwar elegant, die numerische Berechnung des gemeinsamen Spektralradius
birgt jedoch Schwierigkeiten. Der invariante Polytop Algorithmus von Guglielmi und Protasov
(2013 – 2016) stellt einen Durchbruch in der Berechnung des gemeinsamen Spektralradius dar.
Der invariante Polytop Algorithmus findet für eine große Klasse von Matrixfamilien den genau-
en Wert ihres gemeinsamen Spektralradius. Der Algorithmus fand Anwendung bei der Lösung
diverser Probleme, unter anderem in der Funktionalanalysis, Approximationstheorie und Kom-
binatorik. In dieser Arbeit schlagen wir Modifikationen des invarianten Polytop Algorithmus
vor, um ihn schneller, robuster und für Matrizen höherer Dimensionen tauglich zu machen. Der
modifizierte Algorithmus berechnet den exakten gemeinsamen Spektralradius für die meisten
Matrixfamilien bis zu Dimension 25, für nicht-negative Matrizen bis zu Dimension 3000.

Weiters stellen wir einen neuen Algorithmus, genannt modifizierter Gripenberg Algorithmus,
vor, der sehr gute untere Schranken für den gemeinsamen Spektralradius von Matrizen in weniger
als fünf Sekunden berechnet. In den meisten unserer Tests fand der modifizierte Gripenberg
Algorithmus sogar den genauen Wert des gemeinsamen Spektralradius. Wir demonstrieren die
numerische Effizienz der Algorithmen an zahlreichen Testbeispielen.
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