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In several papers of 2013 – 2016, Guglielmi and Protasov made a breakthrough in the problem of the joint

spectral radius computation, developing the invariant polytope algorithm which for most matrix families finds

the exact value of the joint spectral radius. This algorithm found many applications in problems of functional

analysis, approximation theory, combinatorics, etc.. In this paper we propose a modification of the invariant

polytope algorithm making it roughly 3 times faster (single threaded), suitable for higher dimensions and

parallelise it. The modified version works for most matrix families of dimensions up to 25, for non-negative

matrices up to 3000. Besides we introduce a new, fast algorithm, called modified Gripenberg algorithm, for

computing good lower bounds for the joint spectral radius. The corresponding examples and statistics of

numerical results are provided. Several applications of our algorithms are presented. In particular, we find the

exact values of the regularity exponents of Daubechies wavelets up to order 42 and the capacities of codes

that avoid certain difference patterns.
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1 INTRODUCTION AND NOTATION
The joint spectral radius (JSR) of a set of matrices is a quantity which describes the maximal

asymptotic growth rate of the norms of products of matrices from that set (with repetitions

permitted). Precisely, given a finite set A = {Aj : j = 1, . . . , J } ⊆ Rs×s , s ∈ N, then

JSR(A) := lim

n→∞
max

Aj ∈A



Ajn · · ·Aj2Aj1



1/n . (1)

In [3] it is proved that (for finite A)

JSR(A) = lim sup

n→∞, Aj ∈A

ρ(Ajn · · ·Aj2Aj1 )
1/n, (2)

where ρ is the classical spectral radius of a matrix. With #A we denote the number of elements of
the set A. If #A = 1, then the JSR reduces to the spectral radius of a matrix.

The JSR has been defined in [31] and since appeared in many (seemingly unrelated) mathematical

applications, e.g. for computing the regularity of wavelets and of subdivision schemes [15], the
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2 Thomas Mejstrik

capacity of codes [28], the stability of linear switched systems [23] or in connection with the Euler

partition function [30].

The computation of the JSR is a notoriously hard problem. Even for non-negative matrices with

rational coefficients this problem is NP-hard [10]. Moreover, the question whether JSR(A) ≤ 1 for

a given set A is algorithmically undecidable [11]. Most algorithms which try to compute or to

approximate the JSR make use of the inequality [15]

max

Aj ∈A
ρ
(
Ajk · · ·Aj1

)
1/k

≤ JSR(A) ≤ max

Aj ∈A



Ajk · · ·Aj1



1/k , (3)

which holds for any k ∈ N. For a product Ajk · · ·Aj1 we say the number ρ
(
Ajk · · ·Aj1

)
1/k

is its

normalized spectral radius. Equation (3) tells us that the normalized spectral radius of every product

is a valid lower bound for the JSR, on the contrary, one has to compute the norms of all products of

a fixed length k ∈ N to obtain a valid upper bound.

If there exists a product Π = Ajn · · ·Aj1 ,Aj ∈ A, such that ρ(Π)1/n = JSR(A), we call the product

a spectral maximizing product (s.m.p.). It has been shown that there exist sets of matrices such that

the normalized spectral radius of every finite product is strictly less than the JSR [24]. In other

words, not all sets of matrices posses an s.m.p.. It is an open question whether pairs of binary

matrices always posses an s.m.p. [6].

An s.m.p. is called dominant if there exists γ > 0 such that γ < JSR(A) and ρ(Ajl · · ·Aj1 )
1/l < γ

whenever Ajl · · ·Aj1 is not an s.m.p.. Dominant s.m.p.s play a role for the termination of the

invariant polytope algorithm discussed in Sections 1.1 and 4.

There are three common strategies to exploit Inequality (3): (i) Compute all products up to a

length k ∈ N [16, 28]; (ii) Take a suitable family of norms and minimize the right hand side of (3)

with respect to that family [1, 8, 9, 29]; (iii) Construct a norm which gives good estimates in (3) for

short products, preferably for products of length one [17, 19–22, 26]. The Gripenberg algorithm [16],

discussed in Section 3, belongs to class (i), the invariant polytope algorithm [17, 19–22], discussed in

Section 1.1, to class (iii). The invariant polytope algorithm is, up to now, one of only two algorithms

which can can compute the exact value of the JSR for a large number of matrix families. The second

one is the infinite tree algorithm [27] which does not belong to any of the classes above. In this

paper we concentrate on the invariant polytope algorithm.

We will call a norm ∥ · ∥ extremal for A if

∥Ajx ∥ ≤ JSR(A) · ∥x ∥ for all x ∈ Rs and for all Aj ∈ A. (4)

In [2] it is shown that every irreducible family of matrices, i.e. a family of matrices which have

no trivial common invariant subspaces, possesses an extremal norm. Its construction is easily

described in terms of the set

P(v) = co

⋃
n∈N0, Aj ∈A

{
±Ajn · · ·Aj1v

}
, (5)

where co denotes the convex hull and v ∈ Rs .

Theorem 1.1. [3, 21]. IfA is irreducible, JSR(A) ≥ 1 and for a givenv ∈ Rs the set P(v) is bounded
and has non-empty interior, then JSR(A) = 1 and P(v) is the unit ball of an extremal norm ∥ · ∥P (v)
for A.

Conversely, ifA is irreducible and JSR(A) = 1, then for any v ∈ Rs , P(v) is a bounded subset of Rs .

Clearly, the unit ball of a norm completely describes the corresponding norm. Given P ⊆ Rs , a
closed, convex and balanced (αP ⊆ P for all |α | < 1) body with non-empty interior, the so-called

Minkowski norm ∥ · ∥P : Rs → R,

∥ · ∥P = inf{r > 0 : x ∈ rP} (6)
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Algorithm xxx: Improved invariant polytope algorithm and applications 3

fulfils {x ∈ Rs : ∥x ∥P ≤ 1} = P .
The idea of the invariant polytope algorithm 1.4 is to construct an invariant set P for the matrices

in the set A in finitely many steps. This is possible when P is a polytope.

We will describe polytopes by the convex hull of its vertices. For finite V ⊆ Rs we define the
symmetrized convex hull of V by

cos V =
{
x ∈ Rs : x =

∑
v ∈V

tvv with

∑
v ∈V

|tv | ≤ 1, tv ∈ Rs
}
= co(V ∪ −V ). (7)

For finite V ⊆ Rs+ we define the cone of V with respect to the first orthant by

co−V =
{
x ∈ Rs+ : x = y − z, y ∈ co(V ), z ∈ Rs+

}
. (8)

For simplicity, we denote with co∗V any of these convex hulls (co, cos , co−) depending on the

context .

In all cases we identify a (finite) set V with the matrix whose columns are the coordinates of the

points v ∈ V . Lemma 1.2 shows properties of Minkowski norms corresponding to various convex

hulls.

Lemma 1.2. Let V ⊆ Rs and x ∈ Rs . Then
(1) IfW are the vertices of another central symmetric polytope with non-empty interior such that

co∗W ⊆ co∗V , then ∥ · ∥co∗ V ≤ ∥ · ∥co∗W .
(2) ∥x ∥co∗ V ≤ ∥t ∥1 ≤

√
m∥t ∥2, where Vt = x , t ∈ Rm .

(3) ∥x ∥cos V ≥ ∥V +x ∥2, where V + is the Moore-Penrose pseudo-inverse of V .
(4) If there existsw ∈ Rs such that |⟨w,v⟩| < |⟨w, x⟩| for all v ∈ V , then x < cos V .
(5) If V ⊆ Rs+, x ∈ Rs+ and there exists v ∈ V such that xl ≤ vl for all l = 1, . . . , s , then x ∈ co−V .
(6) IfV ⊆ Rs+, x ∈ Rs+ and there exists l ∈ {1, . . . , s} such that xl > vl for allv ∈ V , then x < co−V .

Proof. (1) This immediately follows from the definition of the Minkowski norm.

(2) Let x ∈ cos V and t ∈ R#V such that x = Vt . Define x̃ = x
∥x ∥cos V

∈ ∂ cos V and t̃ = t
∥x ∥cos V

. It

follows that x̃ = V t̃ with ∥t̃ ∥1 ≥ 1. Indeed, ∥t̃ ∥1 < 1 would imply that x̃ ∈ (cos V )◦. Clearly,

1 = ∥x̃ ∥cos V ≤ ∥t̃ ∥1 and ∥x ∥cos V ≤ ∥t ∥1. Finally, by (1), ∥x ∥co− V ≤ ∥x ∥cos V . The second
inequality follows from the equivalence of norms.

(3) Let x ∈ cos V and t ∈ R#V such that x = Vt . It follows that ∥t ∥1 ≥ ∥t ∥2 ≥ ∥V +x ∥2 because,
by construction of the Moore-Penrose pseudo inverse, V +x is the unique solution to Vt = x
with minimum 2-norm. Finally, by (2), ∥x ∥cos V = mint ∈R#V :V t=x ∥t ∥1 ≥ ∥V +x ∥2.

(4) If |⟨w,v⟩| < |⟨w, x⟩| for all v ∈ V , then there exists a hyperplane which separates the point x
and the polytope cos V . From this the claim directly follows.

(5) Defining z := v − x we see that z ∈ Rs+ which implies x = v − z ∈ co−V .

(6) Since cos V is convex, yl ≤ vl for all y ∈ coV ∩Rs+. Since zl > 0 it follows that yl − zl ≤ yl ≤
vl < xl . Thus, there does not exist y, z such that x = y − z.

□

Remark 1.3. Estimate 1.2 (5) uses the fact that the norms ∥ · ∥co− V are orthant monotonic, i.e.

∥x ∥co− V ≤ ∥y∥co− V , x,y ∈ Rs+ whenever 0 ≤ xi ≤ yi for all i = 1, . . . , s . It would be interesting

to know whether and when Minkowski norms ∥ · ∥cos V or Minkowski norms composed with

linear mappings ∥M · ∥cos V , M ∈ Rs×s , are orthant monotonic. This would allow to transfer the

estimate 1.2 (5) to Minkowski norms corresponding to symmetrised convex hulls cos V .

1.1 Invariant polytope algorithm and outline for the paper
In this section we present the idea of the invariant polytope algorithm. The major topic of this

paper are modifications to the invariant polytope algorithm making it
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4 Thomas Mejstrik

• faster and parallel,

• more robust and

• more efficient for larger matrices.

These modifications are outlined in Section 2. The actual modified invariant polytope algorithm 4.1

is given in Section 4. In Section 3 we introduce the modified Gripenberg algorithm 3.1 which is

capable of finding very long s.m.p.-candidates in short time. Section 5 is devoted to numerical

examples showing where the algorithms from Sections 3 and 4 perform well and where they are

not applicable any more.

Algorithm 1.4 (Invariant polytope algorithm [17, 19–22]). Given A = {Aj : j = 1, . . . , J } ⊆ Rs×s .

(1) For some D ∈ N look over all products of matrices in A of length less than D and choose a

shortest product Π1 such that ρc := ρ(Π1)
1/l1

is maximal, where l1 is the length of the product

and call Π1 spectral maximizing product-candidate (s.m.p.-candidate). Set Ã := ρ−1c A. Now

we try to prove that JSR(Ã) ≤ 1.

(2) Letv1 be the leading eigenvector ofΠ1 i.e. the eigenvector with respect to the largest eigenvalue

in magnitude

(3) Construct the cyclic root H : Let v(i)
1
, i = 1, . . . , l1 − 1, be the leading eigenvectors of the

cyclic permutations of Π̃1, i.e. for Π̃1 = Ãjl
1

· · · Ãj1 we get v(i)
1

:= Ãji · · · Ãj1v1. Set H :=

{v(0)

1
, . . . ,v(l1−1)

1
} and V := H .

(4) For all v ∈ V and for all j = 1, . . . , J
If ∥Ãjv ∥co∗ V > 1 set V := V ∪ Ãjv .
Depending on A and the leading eigenvector v0 we use different convex hulls:
case (P): If all entries of the matrices Aj are non-negative, then we can take a non-negative

leading eigenvector v0 in step (2) and use co−.

case (R): If the matricesAj have positive and negative entries and the leading eigenvectorv0
is real, then we use cos ;

(5) Repeat step (4) until ÃV ⊆ co∗V .

(6) If ÃV ⊆ co∗V , then the algorithm terminates and we have found an invariant polytope co∗V ,

which implies that ∥Ãj ∥co∗ V ≤ 1 for all j = 1, . . . , J , or in other words, JSR(Ã) ≤ 1.

Remark 1.5. In step 1.4 (4) we actually add a vertex Ãjv < H even if it lies slightly inside of

the polytope, i.e. if ∥Ãjv ∥co∗ V > 1 − ϵ , where ϵ > 0 is the accuracy up to which the norm can be

computed. This is important to obtain a mathematically rigorous result.

Remark 1.6. If neither case (P) nor case (R) applies, i.e. the matrices are not strictly non-negative

and have complex leading eigenvalues, then one would have to consider complex polytopes, which

is not discussed in this paper.

Figure 1 presents the invariant polytope algorithm on some concrete example.

2 SUMMARY OF THE MAIN MODIFICATIONS
In this section we present the modifications to the invariant polytope algorithm 1.4 and explain

their importance. For more details see Sections 3 and 4.

2.1 New balancing procedure
In steps (2) and (3) of the explanation of the invariant polytope algorithm in 1.4, we only had one

cyclic root, corresponding to the one leading eigenvector v1. If there happens to be more than one

cyclic root, then it is necessary to balance the sizes of the cyclic roots to each other in order to ensure

termination of the invariant polytope algorithm [19]. There are (at the moment) three reasons why
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Fig. 1. The polytope co−V as constructed by the invariant polytope algorithm 1.4 for the matrices A =
[
0 0

1 1

]
,

B =
[
1 1

0 1

]
, In (a) we see the cone co−H with respect to the cyclic rootH =

{
v1, Ãv1, B̃Ãv1

}
. In (b) we see the

vertices Ãv1, ÃÃv1 and ÃB̃Ãv1 constructed in the first iteration. In (c) we see the new polytope co−(H ∪ B̃v1)
together with the vertices B̃B̃v1 and ÃB̃v1 constructed in the second iteration, which are all mapped into the
interior of co−H ∪ B̃v1.More precise:
All entries of A and B are non-negative, thus, we are in case (P) and use the cone hull co− to compute the
Minkowski-norms in step 1.4 4.
(1) We choose Π1 = BBA, which is the product with the highest averaged spectral radius among all products
of length less or equal than three. Thus, l1 = 3, ρc = ρ(Π1)

1/l1 = 3
1/3 and we define Ã = ρ−1c A, B̃ = ρ−1c B,

Ã = {Ã, B̃}, Π̃1 = B̃B̃Ã.
(2) The s.m.p.-candidate Π̃1 has only one simple leading eigenvalue 1 with a corresponding eigenvector
v1 = v

(0)

1
given by v1 = v

(0)

1
= 5

−1/2[ 2 1 ]T .

(3) We construct the cyclic root H = {v
(0)

1
,v

(1)

1
,v

(2)

1
} = {v1, Ãv1, B̃Ãv1} = 5

−1/2
{
[ 1 2 ]T , [ 0 3

2/3 ]T ,

[ 31/3 3
1/3 ]T

}
and set V = H .

(4, first iteration) We compute the norms of the vectors ÃV \V . The vector B̃v1 is outside of the polytope
co−V , ∥B̃v1∥co− V ≃ 1.04 ≥ 1, and thus, it is added to the set V . All other vectors, i.e. ÃÃv1 and ÃB̃Ãv1, in
the first iteration are inside of co−V ∪ B̃v1; ∥ÃÃv1∥

co− V∪B̃v1

≃ 0.69 < 1, ∥ÃB̃Ãv1∥
co− V∪B̃v1

≃ 0.96 < 1.

(4, second iteration) We repeat step 4 and test the vectors from the set A(V ∪ B̃v1) \ (V ∪ B̃v1);
∥B̃B̃v1∥

co− V∪B̃v1

≃ 0.92 < 1, ∥ÃB̃v1∥
co− V∪B̃v1

≃ 0.92 < 1.

(5) All vertices from the second iteration are mapped into the interior of the polytope P = co−V ∪ B̃v1,
therefore, P is Ã-invariant and JSR(A) = ρ(Π1)

1/l1 = 3
1/3 ≃ 1.4422.

multiple cyclic roots occur: (1) The s.m.p.-candidate Π1 possesses more than one leading eigenvalue,

or its leading eigenvalue is not simple, or there are more than one s.m.p.-candidates Π1 . . . ,ΠR ,

R ∈ N. But, multiple cyclic roots also can be generated by (2) artificially adding cyclic roots or

by (3) artificially adding individual vertices. Technique (2) usually is employed whenever there

are matrix products whose averaged spectral radius is nearly that of the s.m.p.-candidate. Such

matrix products are usually called nearly-s.m.p.s [19, Remark 3.7]. If the leading eigenvectors of a

nearly-s.m.p. are complex, one can take a real pair of vectors spanning the space generated by the

complex eigenvectors. Technique (3) usually is employed whenever the initial polytope co∗ H is

very flat [19, Section 4].

The original balancing procedure described in [19, Sections 2.3 and 3] may fail for multiple

cyclic roots caused by the presence of nearly-s.m.p.s.. In Section 4.5 we improve on the original

implementation such that it always works and, in addition, automatically. In Section 4.4 we suggest

an automated procedure how to select good nearly-s.m.p.s and extra vertices. Aside from that,

Example 4.3 presents a set of matrices where it was wrongly assumed that no balancing is necessary.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2020.



6 Thomas Mejstrik

2.2 Finding s.m.p. candidates
The invariant polytope algorithm 1.4 only terminates if all s.m.p.-candidates Πr , r = 1, . . . ,R, are
indeed s.m.p.s.. Thus, the invariant polytope algorithm 1.4 heavily relies on correct initial guesses

for the s.m.p.-candidates. A plain brute-force search in 1.4 (1) will fail, if the s.m.p.s length is large.

Our numerical tests have shown that even for random pairs of 2 × 2 matrices s.m.p.s of length

greater than 30 are not uncommon. A particular easy example is given in Example 5.2. We present

two new methods that search for s.m.p.s efficiently in Sections 3 and 4.10.

2.3 Bounds for the JSR
If the invariant polytope algorithm 1.4 does not find an invariant polytope in reasonable time, it can

still give an upper bound for the JSR after termination. In Lemma 4.2 we show that our modified

invariant polytope algorithm can return bounds for the JSR in each iteration of the modified

invariant polytope algorithm without the need of terminating the algorithm.

Nevertheless, these bounds are usually quite rough. A simple modification, presented in Re-

mark 4.3, increases the accuracy of these intermediate bounds on the drawback that the exact value

of the JSR becomes incomputable.

2.4 Parallelization and natural selection of vertices
A disadvantage of the invariant polytope algorithm 1.4 in its current form is that the polytope

is changed inside of the main loop in 1.4 (4), which implies that in general the norm of Ãjv
has to be computed with respect to a different polytope for each vertex. Therefore, the linear

programming problem is different for each norm and the so-called warm start of linear programming

problems cannot be used. Furthermore, the main loop cannot be parallelised. We eliminate these

two drawbacks and additionally speed up the invariant polytope algorithm in Section 4.8.

The employed technique also solves a problem arising when the number of matrices in A is

large. In such cases the invariant polytope algorithm 1.4 will stall, simply due to the fact, that the

number of vertices to test, increases in the worst case by a factor of #A in each iteration. E.g., if

#A ≳ 100, the original invariant polytope algorithm is likely never to reach the third iteration.

2.5 Estimating the Minkowski norm
To reduce the number of norms one has to compute in 1.4 (4), we use the estimates for theMinkowski

norm in Lemma 1.2.

3 MODIFIED GRIPENBERG ALGORITHM
From Inequality (3) we know that the normalized spectral radius of any matrix product is a lower

bound for the JSR. Thus, by a clever guess of a matrix product one easily obtains good (maybe

sharp) lower bounds for the JSR. Our new modified Gripenberg algorithm presented in this section

finds in nearly all of our numerical tests an s.m.p..

The modified Gripenberg algorithm 3.1 is a modification of the well-known Gripenberg algo-

rithm [16], one of the first algorithms which gave reasonable estimates for the JSR. We briefly

describe how it works: Given some accuracy 0 < δ ≤ 1 we iteratively compute the sets Ck , k ∈ N0.

C0 := I and Ck+1 consists of all matrices C ∈ ACk with ∥C∥1/(k+1) ≥ δ−1b−, where

b− = max{ρ(C)1/n : C ∈ Cn, n = 1, . . . ,k}

is the current lower bound for the JSR. In other words, we sort out matrix products whose averaged

norm is less than the current lower b− bound of the JSR. For each k the JSR lies in the interval

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2020.



Algorithm xxx: Improved invariant polytope algorithm and applications 7

A

∥1.41∥
ρ(1)

AA

∥1.19∥
ρ(1)

BA

∥1.41∥
ρ(1.41)

B

∥1.61∥
ρ(1)

AB

∥1.49∥
ρ(1.41)

AAB

∥1.31∥
ρ(1.26)

BAB

∥1.47∥
ρ(1.44)

BB

∥1.55∥
ρ(1)

ABB

∥1.47∥
ρ(1.44)

BBB

∥1.44∥
ρ(1)

b− = 1

b+ = 1.61
δ−1b− = 1.05

b− = 1.41
b+ = 1.55

δ−1b− = 1.48

b− = 1.44
b+ = 1.47

δ−1b− = 1.51

Fig. 2. Tree built up by Gripenberg’s algorithm for the matrices A =
[
0 0

1 1

]
and B =

[
1 1

0 1

]
with δ = 0.95 and

using the 2-norm. The computed matrices, their averaged norms and averaged spectral radii are printed.
Gripenberg’s algorithm terminates after the third iteration, since all extant matrices have averaged norm less
then δ−1b−. Thus, JSR ∈ [1.44, 1.47]. More precise:
Iteration 1 Gripenberg’s algorithm starts computing (averaged) norms and spectral radii of the matrices
in the set C1 = A · {I } = {A,B}; ∥A∥

2
≃ 1.41, ∥B∥

2
≃ 1.61, ρ(A) = 1, ρ(B) = 1. Thus, we get the lower and

upper bounds b− = max{ρ(A), ρ(B)} = 1 and b+ = max{∥A∥
2
, ∥B∥

2
} ≃ 1.61 for the JSR. The norms of both

matrices is larger than δ−1b−, thus, C2 = A{A,B} = {AA,BA,AB,BB}.
Iteration 2 Computing all averaged norms and spectral radii from the matrices in the set C2, we obtain
b− ≃ 1.41, b+ ≃ 1.55. Since, ∥AA∥1/2

2
, ∥BA∥

1/2

2
< δ−1b− we define C3 = A{AB,BB}.

Iteration 3 Computing all averaged norms and spectral radii from the matrices in the set C3, we obtain
b− ≃ 1.44, b+ ≃ 1.45. The averaged norms of all matrices in the set C3 is less than b−, and thus, C4 = ∅. The
algorithm terminates and returns JSR(A)

∼
∈[1.44, 1.47]. Note that, indeed, δ ≤ 0.98 ≃ 1.44/1.47.

[b−, b+] with

b+ = min

n=1, ...k
max

{
∥C ∥1/n : C ∈ Cn

}
.

Note thatb− is monotone increasing andb+ is monotone decreasing. If δ < 1 Gripenberg’s algorithm

terminates [16], i.e. there exists K ∈ N such thatCK = ∅ and the JSR is computed up to an accuracy

of δ , i.e. b−/b+ ≤ δ . For real-world applications Gripenberg’s algorithm works well for δ ≤ 0.95. For
larger δ the number of products to compute is usually too large. Figure 2 shows how to estimate the

JSR using Gripenberg’s algorithm for a concrete set of matrices. For some vertexw = Aj , v ∈ Vk ,
k ∈ N, we say thatw is a child of v , and that v is the parent ofw .

The modified Gripenberg algorithm 3.1 uses a different mechanism to sort out matrix products.

Instead of just dismissing products with norms less than some threshold, it furthermore only keeps

products with highest and lowest norms,

Algorithm 3.1 (modified Gripenberg algorithm).

Input :

Set of square matrices A = {Aj : j = 1, . . . , J } ⊆ Rs×s

Number of products kept in each step N ∈ N

Maximal length of products D ∈ N

Output :
S.m.p.-candidates C

Lower bound ρc for JSR(A)

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2020.



8 Thomas Mejstrik

A

∥1.41∥
ρ(1)

AA

∥1.19∥
ρ(1)

BA

∥1.41∥
ρ(1.41)

ABA

∥1.41∥
ρ(1.26)

BBA

∥1.47∥
ρ(1.44)

B

∥1.61∥
ρ(1)

AB

∥1.49∥
ρ(1.41)

BB

∥1.55∥
ρ(1)

ABB

∥1.47∥
ρ(1.44)

BBB

∥1.44∥
ρ(1)

ρc = 1

ρc ≃ 1.41

ρc ≃ 1.44

Fig. 3. Tree built up by the modified Gripenberg algorithm for the matrices A =
[
0 0

1 1

]
and B =

[
1 1

0 1

]
with

N = 1, D = 3 and using the 2-norm. The computed matrices, their averaged norms and averaged spectral
radii are printed. The modified Gripenberg algorithm returns that JSR({A,B}) ≳ 1.44. More precise:
Iteration 1 We set M0 = {I }, ρc = 0. The modified Gripenberg algorithm starts computing averaged norms
and spectral radii of the matrices in the set M1 = AM0 = {A,B}; ∥A∥

2
≃ 1.41, ∥B∥

2
≃ 1.61, ρ(A) = 1,

ρ(B) = 1. Thus, ρc = max{0, ρ(A), ρ(B)} = 1. Since ∥A∥
2
, ∥B∥

2
≥ ρc no matrix products are removed, and

M1 = {A,B}. After sorting with respect to the (averaged) norms we obtain M1 = {B,A}. Since N = 1 we
keep the first and last element of the sorted set, thus,M1 = {B,A}.
Iteration 2 Computing the averaged norms and spectral radii in the setM2 = AM1. we obtain ρc ≃ 1.41.
Since ∥AA∥

1/2

2
< ρc we set M2 = {BA,AB,BB}. After sorting with respect to the averaged norms we obtain

M2 = {BB,AB,BA} and since N = 1 we keep the first and last element,thus,M2 = {BB,BA}.
Iteration 3 Computing the averaged norms and spectral radii in the setM3 = AM2. we obtain ρc ≃ 1.44.
Since D = 3 we stop in this iteration and return JSR(A) ≳ 1.44 and the set of s.m.p.-candidates C = {BBA}.

Initialization :

Start with the product of length 0, M0 := {I }, where I is the identity matrix

Set current lower bound for JSR, ρc := 0

Algorithm :

for d = 1, . . . ,D

Compute all possible new products Md := AMd−1

Update lower bound ρc := max{ρc , ρ(Md )
1/d

: Md ∈ Md }

Remove products whose norms are less than ρc , Md := {Md ∈ Md : ∥Md ∥
1/d ≥ ρc }

Keep only products with highest and lowest norms:

Sort Md w.r.t ∥Md ∥ and sort out matrices with indices N + 1, . . . , #Md − N − 1

Thus Md = {M1, . . . ,MN ,M#Md−N , . . . ,M#Md : Mi ∈ Md }

(9)

Post processing :

Choose products C = {Mdi ∈ Md : ρ(Mdi )
1/d = ρc , d = 1, . . . ,D}

Remove cyclic permutations and powers of products from C

return C, ρc

Theorem 3.2. The modified Gripenberg algorithm 3.1 has linear complexity in the number J = #A

of matrices , in the number N ∈ N of kept products in each level and in the maximal length D ∈ N of
the products.
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Algorithm xxx: Improved invariant polytope algorithm and applications 9

Proof. In every iteration, in total D many, the modified Gripenberg algorithm computes at most

2 · N · J norms and spectral radii. □

Remark 3.3. The modified Gripenberg algorithm 3.1 in the given form only returns lower bounds

for the JSR. If one keeps track which products are dismissed, then it is possible to give also upper

bounds for the JSR. Note that the modified Gripenberg algorithm with parameters N = D = ∞ is

exactly Gripenberg’s algorithm with accuracy δ = 1,

Remark 3.4. Clearly one can pursue other selection strategies in step (9). The straightforward

choice of taking the 2 · N products with highest normalized norm performs very badly. Taking

an arbitrary subset of Md of size 2 · N in step 3.1 (9) performs mostly similarly to the modified

Gripenberg algorithm 3.1, but in some cases worse, see Table 3 where we call it random Gripenberg
algorithm. Furthermore, the modified Gripenberg algorithm 3.1 in the given form is deterministic,

so we prefer it over a non-deterministic version.

Remark 3.5. Our new modified invariant polytope algorithm, presented in Section 4, can also be

used to search for s.m.p.-candidates. Thus, we give the numerical examples showing the performance

of the modified Gripenberg algorithm 3.1 only after Section 4.

Figure 3 shows how to find lower bounds for the JSR using the modified Gripenberg algorithm

for a concrete set of matrices. You may want to compare this Figure with Figure 2.

4 MODIFIED INVARIANT POLYTOPE ALGORITHM
In this section, we present the modifications to the invariant polytope algorithm 1.4.

Algorithm 4.1 (Modified invariant polytope algorithm). Lines with numbers are subroutines,

described in detail in Sections 4.1–4.10.

Input :

Set of irreducible square matrices A = {Aj : j = 1, . . . , J } ⊆ Rs×s (10)

Accuracy 0 < δ ≤ 1 (δ ≃ 1)

Accuracy 0 < ϵ < 1 for computing the norms N (v) in (17) (ϵ ≃ 0)

Output :
Exact value ρc or bound [ρc , b · ρc ] for JSR(A)

Invariant polytope co∗V

Spectral maximizing products Πr

Initialization :

Search for s.m.p.-candidates and nearly-s.m.p.s Πr = Ajrlr
· · ·Ajr

1

, r = 1, . . . ,R (11)

Set ρr := ρ(Πr )
1/lr , ρc := max ρr , Ã := δρ−1c A (12)

Compute the leading eigenvectors vr of Π̃r

Compute the root vectors v(i)
r := (ρc/δρr )

iÃjri . . . Ãjr
1

vr , i = 0, . . . , lr − 1

Compute the extra-vertices vR+1, . . . ,vS ∈ Rs (13)

Compute the balancing factors α1, . . . ,αS ∈ R (14)

Set H := {α1v
(0)

1
,α1v

(1)

1
,α1v

(2)

1
, . . . ,αRv

(lR−1)
R }, V0 := H ∪ {αR+1vR+1, . . . ,αSvS }
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10 Thomas Mejstrik

Set N (v) := ∞ for all v ∈ V0, b0 := ∞, k := 0

Main Loop :

while ÃVk \ Vk ⊈ (1 − ϵ) co∗Vk

Select new children Ek+1 ⊆ ÃVk \ Vk based on norm estimates (15)

Choose subset of verticesWk ⊆ Vk (16)

Compute/classify norm N (v) := ∥v ∥co∗Wk for all v ∈ Ek+1 (17)

Vk+1 := Vk ∪ {v ∈ Ek+1 : N (v) > 1 − ϵ} (18)

bk+1 := min

{
bk , max{1, N (v)(1 − ϵ)−1 : v ∈ Vk+1 ∧ Ãv ⊈ Vk+1}}

Test spectral radii based and eigenplane based stopping critera (19)

print JSR ∈ [ρc , δ
−1 · bk+1 · ρc ]

k := k + 1

return V , {Πr }r , ρc

Theorem 4.2. Let A = {Aj : j = 1, . . . , J } ⊆ Rs×s be a finite set of square matrices.
(i) For δ = 1, the modified invariant polytope algorithm 4.1 terminates if and only if the original

invariant polytope algorithm 1.4 terminates, i.e. Π1, . . . ,ΠR are dominant s.m.p.s and each s.m.p.
possesses only one simple leading eigenvalue1.

(ii) For 0 < δ < 1 the modified invariant polytope algorithm 4.1 terminates if JSR(A) < δ−1 · ρc .
(iii) Moreover, for any iteration k ∈ N0, JSR(A) ∈ [ρc , δ

−1 · bk+1 · ρc ], where ρc and and bk+1 are
defined in Algorithm 4.1.

Before presenting the proof of Theorem 4.2 in Section 4.11, we describe all modifications and

extensions to the original invariant polytope algorithm 1.4. These are numbered (10)–(19) in the

modified invariant polytope algorithm 4.1. All heuristic constants which influence the behaviour of

the algorithm can be changed by passing a name-value pair in the function call of our implementa-

tion, see the documentation for more information.

4.1 Irreducibility of input matrices (10)
The set of matrices A should be irreducible, i.e. the matrices in the set A should not have a trivial

common invariant subspace, because otherwise (both the modified 4.1 and) the invariant polytope

algorithm 1.4 may not be able to terminate. If the matrices are reducible, then there exists a basis in

which all of the matricesAj have block upper triangular form. The JSR of the matrices then equals to

the maximum of the JSR of the diagonal blocks. In our implementation we therefore automatically

search for non-trivial common invariant subspaces prior to starting the modified invariant polytope

algorithm. Here we make use of the functions permTriangul and jointTriangul from [25], as well

as a new method invariantsubspace which searches for non-trivial common invariant difference

subspaces as described in [13].

4.2 Search for s.m.p.-candidates (11)
We use the modified Gripenberg algorithm 3.1 to search for s.m.p.-candidates and nearly-s.m.p.s.

Every product, which is shorter than the s.m.p.-candidate and having normalized spectral radius

greater or equal to τ ·ρc is considered to be a nearly-s.m.p.. In our implementation we use a heuristic

default value of τ = 0.9999 and use the Matlab function eig to compute the leading eigenvalues.

1
In [17] such eigenvalues are called unique.
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Algorithm xxx: Improved invariant polytope algorithm and applications 11

This may not be the fastest available procedure, but it is fast enough in comparison to the time the

main loop needs to terminate.

4.3 Approximate computation (12)

If we multiply the set of matrices Ã by a factor 0 < δ < 1, the modified invariant polytope

algorithm 4.1 cannot return exact values for the JSR anymore, but only up to a relative accuracy

of δ . Indeed, if the modified invariant polytope algorithm 4.1 terminates, then ∥Ãjv ∥co∗ V ≤ 1 ⇔

∥Ajv ∥co∗ V ≤ δ−1 · ρc ⇔ JSR(A) ≤ δ−1 · ρc . There are cases where this procedure is of significance.

(a). If the dimension s of matrices is large, (both the modified 4.1 and) the invariant polytope

algorithm 1.4, will probably not terminate anyway, and thus only give bounds for the JSR. A

factor δ ≃ 0.97 will speed up the computation tremendously and the returned bounds from the

modified invariant polytope algorithm are mostly better (at least in our numerical examples) than

for δ = 1. The value 0.97 is based on numerical experiments. An optimal value for δ can probably be

determined using the spectral gap at 1, but no theoretical investigations nor numerical experiments

in that direction have been taken so far.

(b). If the s.m.p.s are not dominant, or there is an infinite number of dominant s.m.p.s, or A is

not irreducible, the modified invariant polytope algorithm 4.1 will not terminate. In these cases,

choosing δ ≃ 1 − 10
−9

ensures that the modified invariant polytope algorithm 4.1 terminates and

the obtained bounds will be nearly the same as when δ = 1. Note that these cases are mostly

non-generic, except for matrix families where this property is known to hold a priori, for example

certain matrix sets occurring in subdivision.

(c). If one is interested only whether JSR(A) < B for some B > 0, one can choose 1 > δ > B−1ρc
and the modified invariant polytope algorithm 4.1 will terminate much faster.

4.4 Adding extra-vertices automatically (13)

The aim of this step in the algorithm is, to compute vertices E = {vR+1, . . . ,vS } such that the

polytope co∗(H ∪ E), H = [v(0)

1
,v(1)

1
, . . . ,v(lR−1)

R ], has non-empty interior and is elongated in all

coordinate directions. The procedure is different in cases (P) and (R).
For case (R), given some threshold T > 0, we compute the singular value decomposition of H =

[v(0)

1
,v(1)

1
, . . . ,v(lR−1)

R ]. and take all singular vectors (which thus become extra-vertices) E = {vR+1,
. . . ,vS } corresponding to singular values which are in modulus less than T . Note that the singular
vectors form an orthonormal system and that the singular vectors corresponding to small singular

values are exactly the directions in which the polytope co∗ H has small or even no elongation. In

particular, the polytope co∗(H ∪ E) has always non-empty interior.

For case (P), en ∈ E whenever vn ≤ T for all v ∈ H , where en is the nth unit vector of Rs ,
In our implementation we use a heuristic value of T ≃ 0.1 for both cases.

4.5 Balancing of cyclic trees (14)
As already noted, the existence of multiple cyclic roots makes it necessary to balance the sizes of

the cyclic roots to each other in order that the invariant polytope algorithm can terminate. The

balancing procedure uses the dual leading eigenvectors v∗
r , r = 1, . . . ,R. More precisely, for the

s.m.p.-candidate Π̃r define Π̃
∗
rv

∗
r = v

∗
r with ⟨v(0)

r ,v
∗
r ⟩ = 1, where Π∗

r is the conjugate transpose of

Πr and ⟨ · , · ⟩ is the standard inner product [19, Section 2.3].
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12 Thomas Mejstrik

If δ < 1 no balancing is necessary by Theorem 4.2. If δ = 1 we define for h ∈ N
qi , j = sup

z∈Ãh {(ρc /ρr )iv
(0)

i , ...,v (li −1)
i }

|⟨v∗
j , z⟩|, i = 1, . . . ,R

qi , j = sup

z∈Ãhvi

|⟨v∗
j , z⟩|, i = R + 1, . . . , S

, j = 1, . . . ,R.

The factor (ρc/ρr )
i
ensures that all vertices of the cyclic root of nearly-s.m.p.s get the same weight

in the computation. If vi is the leading eigenvector of an s.m.p.-candidate, we have ρc/ρr = 1. Now

one has to find numbers α1, . . . ,αS > 0 such that{
αiqi , j < α j whenever vi is the leading eigenvector of an s.m.p.-candidate

αiqi , j < 1 otherwise

and multiply all vertices v(j)
i , i = 1, . . . ,R, j(i) = 0, . . . , li − 1, and extra-vertices vi , i = R + 1, . . . , S ,

from the rootH with the corresponding balancing factor αi . In our implementation we distinguish

between extra-vertices and vertices from nearly-s.m.p.s., precisely we solve the following system
αiqi , j < α j whenever vi is the leading eigenvector of an s.m.p.-candidate

αiqi , j = Bnearly · ρi whenever vi is the leading eigenvector of a nearly-s.m.p.

αiqi , j = Bextra whenever vi is an extra-vertex

,

where Bnearly = 0.999 and Bextra = 0.01 are based on numerical experiments. [19, Theorem 3.3]

ensures that the modified invariant polytope algorithm 4.1 terminates when started with both

the balanced s.m.p.-candidates, nearly-s.m.p.s and extra-vertices if and only if it terminates when

started solely with the balanced s.m.p.-candidates.

It was assumed (personal communication), at least for dimension s = 1, that the balancing factors

for transition matrices occurring in subdivision theory
2
are always equal to 1. While it is not hard

to find counterexamples in dimensions s > 1, the claim is also not valid in the univariate case, as

Example 4.3 shows. Readers unfamiliar with subdivision schemes may skip Example 4.3.

Example 4.3. Let S be the univariate subdivision scheme defined by the mask a and the dilation

matrixM given by

a =
1

12

[ 3 3 4 3 3 4 3 3 4 3 3 ]T , M = −3.

The basic limit function can be seen in Figure 4. Taking the digit setD = {−2, −1, 0} = M[0, 1)∩Z,
we construct the set ΩC = {−4, −3, −2, −1, 0, 1} (using [12, Lemma 3.8]) and the corresponding

transition matrices Td =
[
a(α −Mβ)

]
α ,β ∈ΩC

, d ∈ D. The restriction of the transition matrices to

the space V of first order differences with basis

1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

0 0 0 0 −1


2
Subdivision schemes are computational means for generating finer and finer meshes in Rs , usually in dimension s = 1, 2, 3.

At each step of the subdivision recursion, the topology of the finer mesh is inherited from the coarser mesh and the

coordinates c (n+1) of the finer vertices are computed by local averages of the coarser ones c (n) by c (n+1) = Sc (n) =∑
α ∈Zs a(· −Mα )c (n)(α ). See [12] for a more thorough explanation.
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Algorithm xxx: Improved invariant polytope algorithm and applications 13

Fig. 4. The basic limit function for the subdivision scheme from Example 4.3.

yields the set of matrices T |V = {T−2 |V , T−1 |V , T0 |V } with

T−2 |V =
−1

12


0 0 0 3 0

3 0 1 2 0

2 0 2 1 0

1 0 3 0 0

0 0 0 0 0


, T−1 |V =

−1

12


0 0 0 0 3

0 3 0 1 2

1 2 0 2 1

2 1 0 3 0

3 0 0 0 0


, T0 |V =

−1

12


0 0 0 0 0

0 0 3 0 1

0 1 2 0 2

0 2 1 0 3

0 3 0 0 0


.

For the s.m.p.s Π1 = T−2T−1T−1 |V and Π2 = T−1T−1T0 |V with balancing vector [ 1 9/10 ], the

original invariant polytope algorithm terminates after 4 iterations. Without balancing the original

invariant polytope algorithm does not terminate.

Example 4.4 shows the advantage of the new balancing procedure in connection with nearly-s.m.p.s.

Example 4.4. Given E1 =

[
2 1

−1 2

]
, E2 =

[
2 0

2 1

]
, the irreducible set E = {E1, E2} has E2E1 as

an s.m.p. and ρ(E) = 2.5396 . . .. Assuming we start the modified invariant polytope algorithm 4.1

with that candidate and the nearly-s.m.p. E2, with corresponding leading eigenvectors v(0)

1
=

[ 0.9121 . . . 0.4100 . . . ]T , v(0)

2
= [ 0.4472 . . . 0.8944 . . . ]T and leading dual eigenvectors v∗

1
=

[ 0.9958 . . . 0.2238 . . . ]T , v∗
2
= [ 2.2361 . . . 0.0000 . . . ]T . For the balancing procedure as described

in [19, Remark 3.7] we need to find numbers α1,α2 > 0 such that for some h ∈ N, say h = 10,

q1,2 = supz∈ ˜Eh {v (0)

1
,v (1)

1
}
|(v∗

2
, z)| = 2.0395 . . . and q2,1 = supz∈ ˜Eh {v (0)

2
}
|(v∗

1
, z)| = 0.8196 . . . the

following two inequalities hold

α1 · 2.0395 . . . = α1q1,2 < α2

α2 · 0.8196 . . . = α2q2,1 < α1.

This is clearly impossible since 2.0 × 0.8 > 1. Because there are no admissible balancing factors for

h = 10, there are no admissible balancing factors for h > 10 [19, Section 3].

Since E1E2 is a dominant s.m.p., the modified invariant polytope algorithm 4.1 terminates if it is

started only with that candidate, and thus, there exist balancing factors such that the the modified

invariant polytope algorithm terminates when started with E2E1 and E1, e.g. α1 = 1, α2 ≃ 0.95 as
given by our new method.

4.6 Select new children – Natural selection of vertices (15)
In the original invariant polytope algorithm 1.4, in every iteration all vertices generated in the last

iteration, which were not mapped inside the polytope, were used to construct new vertices. In the

modified invariant polytope algorithm 4.1 we only take a subset of those. We choose the vertices
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14 Thomas Mejstrik

under the mild condition that

for every n ∈ N, every vertex of {Ãj }
nV0 eventually will be selected, (20)

given that it is not absorbed already. In other words, we do not forget any vertex to select. This

condition is necessary to proof that the modified invariant polytope algorithm and the original

invariant polytope algorithm have the same qualitative behaviour in Theorem 4.2.

Two selection strategies turned out to work well:

(a) Choose those vertices that have the largest (e.g. highest decile) norm ∥V +k · ∥2, where V
+
k

denotes any pseudo-inverse of Vk . In view of Lemma 1.2 (2), the value ∥V +k v ∥2 is an approxi-

mation of ∥v ∥co∗ Vk and, thus, we may assume that vertices v with high value ∥V +k v ∥2 are far
outside of the polytope co∗Vk .

(b) Choose those vertices whose parent vertex has largest normwith respect to the norm ∥ · ∥co∗ V .

With a good selection of new vertices, the polytope co∗Vk gets large faster, thus, can absorb new

vertices faster, and so the number of vertices of the invariant polytope may be smaller. Strategy (a)
reduces the number of vertices of the invariant polytope by roughly 20%, strategy (b) by roughly

10%. Since the intermediate bounds bk for the JSR decreases very slowly when we use strategy (a)
only, we use three times (a) and one time (b) in our implementation.

Algorithm 4.5 (Subroutine Natural selection of vertices (15)).

Input Vk , Output Ek+1

if k , 0 mod 4 then compute yv = ∥V +k v ∥ for all v ∈ AVk \ Vk

else set yv = ∥w ∥Ek for all v ∈ Aw \ Vk , w ∈ Vk

sort Ek

Ek+1 := Choose 10%, but at least 4 · #thread, of the highest values in Ekand such that (20) holds

In Algorithm 15, we denote with #thread the number of available threads of the computer.

The natural selection of new vertices also makes the modified invariant polytope algorithm 4.1

applicable for problems with a large number of matrices, since it ensures that the number of norms

to be computed in each iteration is reasonably small.

4.7 Simplified polytope (16)

In each iteration k we take a subsetWk ⊆ Vk of vertices which are used to compute the norms in

step (17) for the vertices in Ek+1 due to 2 reasons.

Firstly, in some examples the vertices constructed by themodified invariant polytope algorithm 4.1

are very near to each other, i.e. are at distances in the order of the machine epsilon. Those vertices

are irrelevant for the size of the polytope and so we disregard them. This also protects against

stability problems in the LP-programming part, since for simplices with vertices very near to

each other, LP-solvers perform very badly. This phenomenon happens frequently when there are

multiple s.m.p.s.. In our implementation we use a variable threshold in (16) when determining

which vertices of the polytope we use in the computation of the norm.

Secondly, as we will see in the proof of Theorem 4.2, in order to obtain intermediate bounds bk+1
for the JSR, we are only allowed to choose vertices whose children are selected for its norm to be

computed, or whose children norms are already computed, i.e. it must be satisfied that

ÃWk ⊆ Vk ∪ Ek+1. (21)

It would also be possible to choose a polytope W (v) for each norm ∥v ∥co∗W (v) we need to

compute, since for each v ∈ Rs we only need s + 1 vectors from V to compute the norm ∥v ∥co∗ V
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Algorithm xxx: Improved invariant polytope algorithm and applications 15

exactly. Unfortunately we have no idea so far, how to select a good subset of Vk in a reasonable

amount of time, i.e. faster than the computation of the norm would take.

4.8 Parallelisation (17) & (18)

This is one of the main differences to the original implementation – the idea is already developed

in [21, Algorithm 5.1]. Instead of testing each vertex one after another, and adding it immediately

to the set of verticesVk if it is outside of the polytope, we compute the norms of all selected vertices

from step (15) with respect to the same polytope. Afterwards we add all vertices which are outside

of the polytope at once to the set Vk .
This clearly leads to larger polytopes, in our examples the number of vertices increases by 10%,

but this is compensated by the fact that we can parallelise the computations of the norms. The

speed-up is nearly linear in the number of available threads. Since the linear programming model

does not change, we can speed up this part further by warm starting the linear programming

problems, i.e. we reuse the solutions obtained from the computations of the other vertices. If there

are no suitable candidates to warm start with, we still can speed up the LP-problem by starting the

search for the solution at the nearest vertex point of the polytopeW . The speed-up from warm

starting is roughly 50-70%.

4.9 Norm classification (17)

Before computing the exact norm of a vector Ajv , we try to determine the relative position (inside

or outside of the polytope) using the estimates in Lemma 1.2. If a vertex is proven to be inside or

outside of the polytope, we do not have to compute its exact norm anymore. Unfortunately, these

estimates are quite rough and fail to determine the position for most vertices, except in case (P)
where Lemma 1.2 (5) gives very good estimates.

Algorithm 4.6 (Subroutine Norm classification and adding of vertices (17) (18)).

Input Ek+1, Output Vk+1

Vk+1 := Vk

for v ∈ Ek+1

Classify ∥v ∥co∗Wk using Lemma 1.2

If v is outside of co∗Vk then N (v) := ∞

else if v is inside of co∗Vk then N (v) := 0

else N (v) := ∥v ∥co∗Wk

If N (v) > 1 − ϵ then Vk+1 = Vk+1 ∪v

4.10 Spectral radius based stopping criterion (19)

The spectral radius based stopping criterion is used to find better s.m.p.-candidates, in case the

chosen s.m.p.-candidates Πr are no s.m.p.s. If the s.m.p.-candidates Πr are s.m.p.s, then all interme-

diately occurring matrix products will have spectral radius less than 1. Unfortunately, the converse

is not true.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2020.



16 Thomas Mejstrik

Algorithm 4.7 (Subroutine Spectral radius based stopping criterion (19)).

Input v ∈ Vk+1, Output Maybe a better s.m.p.-candidate.

for v = Ãjn · · · Ãj0v
(0)
s ∈ Vk+1

Compute ρ = ρ(Ãjn · · · Ãj0 )
1/n

if ρ > 1 then restart algorithm with s.m.p.-candidate Ajn · · ·Aj0

As noted, if the candidates are not s.m.p.s, it can happen that all intermediately occurring matrix

products have spectral radius less than 1 and that the modified invariant polytope algorithm 4.1

never stops, see Example 4.8. Nevertheless, this never happened in any non-artificial example.

Furthermore, products with larger normalized spectral radius always occurred very fast. Thus,

from a practical point of view, the spectral radius based stopping criterion is a better way to

check whether the candidates are s.m.p.s than the eigenplane based method described in [17,

Proposition 2]. On the other hand, whenever the eigenplane based method [17, Proposition 2] is

applicable, it is fail-proof and eventually will strike if an s.m.p.-candidate is not an s.m.p.. Thus, in

our implementation of the modified invariant polytope algorithm both stopping criteria are used.

We now illustrate how the new stopping criterion (19) may fail. For that purpose, we introduce

for given η ≥ 0 the set

Mη = {(jn)n ∈ {1, . . . , J }N : ρ(Ãjm · · · Ãj1 )
1/m ≤ η, ∀m ∈ N}.

For η = 1, the products Ãjn · · · Ãj1 , (jn)n ∈ M1, are exactly the products occurring in the modified

invariant polytope algorithm 4.1 until the spectral radius based stopping criterion (19) strikes. The

hope would be, that the norms of the products in that sequence stay bounded, i.e. ∃C > 0 such

that ∥Ãjn · · · Ãj1 ∥ < C for all n ∈ N.

Example 4.8. Let A =
[
1 1

0 1

]
, B =

[
1 0

1 1

]
. Clearly JSR({A,B}) = ρ(AB)1/2 = (

√
5+ 1)/2 and

{A,B} is irreducible. We choose Π1 = A and Π2 = B as our two (wrong) s.m.p.-candidates, thus,

ρc = ρr = 1, Π̃1 = Ã = A, Π̃2 = B̃ = B, V0 = H = {v(0)

1
,v(0)

2
} with v(0)

1
= [ 1 0 ]T , v(0)

2
= [ 0 1 ]T ,

and since there are no extra vertices, V0 = H .

Now, we use a (bad) selection procedure of new vertices Ek+1 in (15) of the natural selection of

vertices; namely, we choose only the vertices Anv2 and B
nv1, n ∈ N.3

We now show that the algorithm constructs an infinitely big polytope, solely with vertices

generated by matrix products whose averaged spectral radius is equal to ρc . Indeed, for n ∈ N,
applying the sequence of products An

to the starting vector v2 we get the sequences of vector
Anv2 = [n 1 ]T , where ρ(An)1/n = 1. The same calculation shows that Bnv1 = [ 1 n ]T and

ρ(Bn)1/n = 1. Finally, co−Vk = co−{[ 1 k ]T , [k 1 ]T }, k ∈ N.

4.11 Proof for Theorem 4.2
Proof. (i) Let δ = 1. Assume that the original invariant polytope algorithm 1.4 terminates at

depth N ∈ N with vertices V
or iд
N , i.e. Ã co∗V

or iд
N ⊆ co∗V

or iд
N . By construction of the original

invariant polytope algorithm 1.4 and by (20), there exists K ∈ N, K ≥ N , such that co∗V
or iд
N =

co∗

⋃N
n=0 Ã

nV0 ⊆ co∗V
mod
K . We claim that co∗V

mod
K is an invariant polytope. By construction

of the modified invariant polytope algorithm 4.1, co∗V
mod
K ⊆ co∗

⋃K
k=0 Ã

kV0. By the invariance

property of the polytope co∗V
or iд
N and by K > N , co∗

⋃K
k=0 Ã

kV0 = co∗V
or iд
N . It follows that

co∗V
or iд
N = co∗V

mod
K , and thus co∗V

mod
K is an invariant polytope.

3
Actually, this selection of vertices is neither type (a) or (b) from Section 4.6, nor does it fulfil the necessary condition (21).
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The other direction follows similarly.

(ii) Assume that JSR(A) < δ−1 · ρc , or equivalently, JSR(Ã) < γ < 1 for some γ > 0. [3, Theorem

I (b)] implies that ∥Ãik · · · Ãi1 ∥ → 0 for any product Ãik · · · Ãi1 ∈ Ãn
as k → ∞. Thus, the modified

invariant polytope algorithm eventually terminates.

(iii) Let k ∈ N0. Without loss of generality we assume that 1 < bk+1 < bk . Let v ∈ Vk+1. We

need to show that ∥Ãjv ∥co∗ Vk+1 ≤ bk+1 for all j ∈ {1, . . . , J }. If Ãjv ∈ Vk+1, then we trivially

get ∥Ãjv ∥co∗ Vk+1 ≤ 1 < bk+1. Thus, we assume that Ãjv < Vk+1. Let k
′ ∈ N0 be the iteration in

which N (Ãjv)was computed. By (21), co∗Wk ′ ⊆ co∗Vk+1. Therefore, ∥Ãjv ∥co∗ Vk+1 ≤ ∥Ãjv ∥co∗ Vk′ ≤

∥Ãjv ∥co∗W ′
k
= N (v)(1 + ϵ)−1 ≤ bk+1. □

5 APPLICATIONS AND NUMERICAL RESULTS
In this section we illustrate the modified Gripenberg algorithm 3.1 and the modified invariant

polytope algorithm 4.1 with numerical examples. For our tests we use matrices from standard

applications, as well as random matrices. We also try to repeat tests previously performed in the

literature [4, 5, 7, 17, 19, 28].

The parameters for the various algorithms (ours and others) are chosen such that they terminate

after a reasonably short time. For the modified invariant polytope algorithm 4.1 the parameters are

chosen such that the modified invariant polytope algorithm terminates at all, hopefully in shortest

time. We do not report the exact parameters, since we believe they are of no value for the reader.

The tests are performed using an Intel Core i5-4670S@3.8GHz, 8GB RAM with the software Matlab

R2017a and Gurobi solver v8.0.
4

For the tests we report • the dimension dim of the matrices, • the duration time needed for the

computation (this value is only to be understood in magnitudes), • the number of matrices J in the

test set A, • the number of vertices #V of the invariant polytope, • spectral maximizing product(s)

s.m.p., and • the number #tests of test runs.

5.1 Main results
5.1.1 Modified invariant polytope algorithm. To summarize, we can say that the single-threaded

modified invariant polytope algorithm 4.1 is roughly three times faster than the original invariant

polytope algorithm 1.4. If the dimension of the matrices is sufficiently large, the parallelised modified

invariant polytope algorithm 4.1 scales nearly linearly with the number of available threads (for at

least up to 16 threads). More precisely,

• for pairs of random matrices the modified invariant polytope algorithm 4.1 reports the exact

value of the JSR in reasonable time up to dimension 25,

• for Daubechies matrices the modified invariant polytope algorithm reports the exact value of

the JSR in reasonable time up to dimension 42,

• for non-negative matrices it strongly depends on the problem. For random, sparse, non-

negative matrices the modified invariant polytope algorithm works up to dimension 3000 or

higher. For the (sparse) matrices arising in the context of code capacities (Section 5.4) the

modified invariant polytope algorithm works well only up to dimension 16. On the one hand

this is due to the large number of matrices to be considered for these examples, on the other

hand the structure of the individual matrices seems to play a role.

5.1.2 Modified Gripenberg algorithm. For the modified Gripenberg algorithm 3.1 we can say, that

it finds in almost all cases an s.m.p.. Thus, for fast estimates of the JSR, the modified Gripenberg

4(a) Our implementation also uses software containing functions from the JSR-Toolbox v1.2b [25]. Permission to use has

been kindly granted. (b) The Gurobi solver is free for academic use.
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algorithm 3.1 may be used independently, e.g. in applications where the parameters where a matrix

family has highest/lowest JSR need to be determined. In a second step one then may compute the

exact JSR for the found parameters using the modified invariant polytope algorithm.

Clearly, since the computation of the JSR is NP-hard, there must be sets of matrices for which

the modified Gripenberg algorithm 3.1 fails
5
and we report mostly these cases together with a

comparison with other algorithms. These are

• the random Gripenberg algorithm 3.1 described in Remark 3.4, • the Gripenberg algorithm, •

the modified invariant polytope algorithm 4.1 and • the Monte-Carlo type genetic algorithm [4].

At least in our test runs, the modified Gripenberg algorithm 3.1 performs best, in the sense that

in most cases it returns a correct s.m.p. in fastest time. More precisely, for long s.m.p.s the modified

Gripenberg algorithm 3.1 performs best and for large sets of matrices the genetic algorithm and

the modified invariant polytope algorithm 4.1 performs best.

5.2 Randomly generated matrices
We first present the behaviour of the modified invariant polytope algorithm 4.1 for pairs of matrices

of dimensions 2 to 20 with normally distributed values whose (a) matrices have the same 2-norm,

(b) matrices have the same spectral radius, and (c) matrices have the same spectral radius and

δ = 0.99 (where δ was the parameter controlling the accuracy of the modified invariant polytope

algorithm 4.1, see Section 4.3 (12)). We see in Table 1 that the modified invariant polytope algorithm

is applicable for pairs of random matrices up to dimension 25, for which it takes roughly one

weekend to complete. For δ = 0.95 the modified invariant polytope algorithm is comparable to

Gripenberg’s algorithm.

Although the modified invariant polytope algorithm 4.1 produces polytopes with roughly twice

as much vertices compared to the same test with the original invariant polytope algorithm in [17,

Table 2], it still works very well for matrices of dimension 20.

Table 1. Computation of the JSR for random pairs of matrices using the modified invariant polytope
algorithm 4.1. δ : accuracy parameter for the modified invariant polytope algorithm (12), dim: dimension of
the matrices, #V : number of vertices of the invariant polytope, time: time needed to compute the invariant
polytope, J : number of matrices, #test : number of test runs.
†We print median values, since there are always outliers if δ =1. The average values are roughly 100 times bigger.

J = 2, #test = 20, median values†

(a) δ = 1 (b) δ = 1 (c) δ = 0.99
equal norm equal spectral radius equal spectral radius

dim time #V time #V time #V
2 1.1 s 5·2 1.2 s 6·2 0.2 s 5·2

4 1.4 s 17·2 1.8 s 77·2 0.8 s 19·2

6 2.0 s 47·2 2.5 s 130·2 1.5 s 47·2

8 2.5 s 100·2 3.9 s 220·2 2.1 s 98·2

10 4.9 s 270·2 5.1 s 320·2 3.3 s 220·2

12 4.7 s 280·2 11 s 770·2 6.6 s 570·2

14 8.4 s 510·2 21 s 1100·2 12 s 800·2

16 25 s 1100·2 33 s 1400·2 25 s 1000·2

18 90 s 2100·2 200 s 2500·2 44 s 1600·2

20 295 s 3100·2 5000 s 6200·2 800 s 3900·2

5
since the modified Gripenberg algorithm has polynomial complexity,
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Random matrices with non-negative entries are a worthy test case, since the computation of

the invariant polytope (i.e. the main loop in the modified invariant polytope algorithm 4.1) always

finishes after a few seconds, nearly regardless of the dimension. Since the implementation is not

optimized for such high dimensions, the modified invariant polytope algorithm still needs some

minutes to terminate, mostly due to the preprocessing steps (11)-(14). For sparse matrices with

non-negative entries, the modified invariant polytope algorithm 4.1 performs slightly worse, but

is still applicable up to dimension 2000 or higher. Again, it is very likely that it still works for

even larger matrices if the implementation were optimized for such matrices, see Table 2 for the

results. We again give the median values. The average values for these cases are roughly 10% higher.

Another benchmark for non-negative matrices is presented in Section 5.4.

Table 2. Computation of the JSR using the modified invariant polytope algorithm 4.1 for random pairs of
matrices with non-negative entries. dim: dimension of the matrices, J : number of matrices, #test : number of
test runs. time: time needed to compute the invariant polytope, #V : number of vertices of the polytope.
†We print the median values, since there are always outliers if δ = 1. The average values are roughly 100 times
bigger. ††Since the matrices are random, most of the sparse matrices have non-trivial invariant subspaces
which reduces the effective dimension of the matrices by roughly 10%. †††Most cones have 8 or 16 vertices,
because the algorithm terminates after 3 or 4 iterations. The algorithm does not check whether all of these
vertices are really outside of the polytope.

J = 2, #test = 20, non-negative entries, equal spectral radius, median values†

0% sparsity 90% sparsity 98% sparsity 99% sparsity
dim†† time #V††† time #V††† time #V time #V
20 0.3 s 7 1.7 s 42

50 0.3 s 8 1.6 s 50 2.2 s 50

100 0.4 s 8 0.8 s 25 17 s 1300

200 0.5 s 8 1.0 s 23 5.0 s 220 110 s 2600

500 1.2 s 8 1.8 s 16 7.7 s 90 26 s 310

1000 6.3 s 8 11 s 16 30 s 45 72 s 110

2000 35 s 8 72 s 16 35 s 8 290 s 64

In Table 3 we see how the modified Gripenberg algorithm 3.1 performs on random matrices with

equally distributed values in [−5, 5] to mimic the test in [4, Section 4.2]. Interestingly, the genetic

algorithm performs very bad, as does the random modified Gripenberg algorithm. We report the

succes-rate, i.e. how often the algorithms did find an s.m.p. in percent.

5.3 Handpicked generic matrices
Example 5.1. Let

X1 =


15

92

−73

79

56

59

89

118

 , X2 =


−231

241

−143

219

103

153

−38

65

 .
The set X = {X1,X2} has an s.m.p. of length 119 with normalized spectral radius JSR(X) ≃ 1.01179.
Gripenberg’s algorithm finds an s.m.p. after an evaluation of ∼630k products, taking roughly ten

minutes. Both the modified Gripenberg algorithm, as well as the genetic algorithm fail. The modified

invariant polytope algorithm 4.1 finds an s.m.p. after less than one minute. The test results are in

Table 4.

Example 5.2 is of interest because it is a rather simple family of two matrices with an arbitrary

long s.m.p..
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Table 3. Performance of various algorithms searching for s.m.p.s. We use the modified invariant polytope
algorithm to test, whether the found s.m.p.-candidates are indeed s.m.p.s. dim: dimension of the matrices, J :
number of matrices, success: percentage of how often a correct s.m.p. is found. #test : number of test runs.
time: time needed by the algorithm.

#tests = 100

J = 2, dim = 2 J = 4, dim = 4 J = 8, dim = 8

Algorithm success time success time success time
mod. invariant polytope 100% 1.1 s 100% 4.3 s 100% 40.0 s
mod. Gripenberg 100% 1.9 s 100% 4.1 s 100% 5.4 s
random Gripenberg 100% 1.8 s 99% 3.8 s 82% 4.3 s
Gripenberg 100% 3.8 s 100% 20.3 s 100% 82.1 s
brute force 100% 180 s 98% 180.0 s 74% 180.0 s
genetic 100% 7.1 s 97% 9.3 s 87% 12.0 s

Table 4. Performance of various algorithms searching for s.m.p.s for a particular hard problem. For the test
set X (Example 5.1) all fast algorithms fail. dim: dimension of the matrices, lower bd.: computed lower bound
for the JSR, J : number of matrices, time: time needed by the algorithm.

Testset Algorithm lower bd. time
X mod. invariant polytope 1.01179 . . . 40 s
J = 2 mod. Gripenberg 1.01130 . . . 4 s
dim = 2 random Gripenberg 1.01172 . . . 10 s

Gripenberg 1.01179 . . . 580 s
genetic 1.01130 . . . 8 s

Example 5.2. Let n ∈ N,C0 =

[
1 1

0 1

]
andCn =

[
0 0

1

n e
1+ 1

n 0

]
, ThenCn

0
Cn is an s.m.p. for the

set Cn = {C0,Cn} with JSR(Cn) = e1/n .
The genetic algorithm fails for most matrices of that family. All other algorithms report the

correct s.m.p. in less than 5 s . The test results are in Table 5.

Proof for Example 5.2. Define C̃n =

[
0 0

n 0

]
, n ∈ N. A product of C0 and C̃n is non-zero

if and only if it is of the form Ci1
0
C̃nC

i2
0
C̃n · · · C̃nC

im
0
. Since the spectral radius does not change

under cyclic permutation, we can assume that the product is of the form Ci1
0
C̃nC

i2
0
C̃n · · ·C

im
0
C̃n . A

(lengthy) straightforward computation shows that the normalized spectral radius of this product is

(nm
∏m

j=1 i j )
1/(m+

∑m
j=1 i j ). Taking the gradient with respect to i and setting it to zero, we immediately

get that all i j must be equal. Thus, the normalized spectral radius of all finite products is maximized

with a product of the form Cm
0
C̃n whose normalized spectral radius equalsmn1/(1+m)

. For fixed

m ∈ N this term has its maximum atn = 1

m e1+1/m . Thus,Cn
0
Cn is the product with largest normalized

spectral radius under all finite products. Using (2) we conclude that JSR(C) = ρ(Cn
0
Cn)

1/(n+1) =

(e(n+1)/n)1/(n+1) = e1/n . □

5.4 Capacity of codes with forbidden difference sets
In some electromagnetic recording systems, the bit error rate is often dominated by a small set of

certain forbidden difference patterns D. Thus, one needs to construct sets of allowed words with
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Table 5. Performance of various algorithms searching for s.m.p.s. For the test sets Cn (Example 5.2) the
genetic algorithm mostly fails. dim: dimension of the matrices, lower bd.: computed lower bound for the JSR,
J : number of matrices, s.m.p.: an s.m.p., time: time needed to compute the invariant polytope,

Test set Algorithm lower bd. time
C15 mod. invariant polytope 1.0689 . . . 1.7 s
J = 2 mod. Gripenberg 1.0689 . . . 3.3 s
dim = 2 random Gripenberg 1.0689 . . . 3.2 s
s .m.p. = C15

0
C15 Gripenberg 1.0689 . . . 0.1 s

genetic 1.0689 . . . 7.0 s
C30 mod. invariant polytope 1.0338 . . . 2.5 s
J = 2 mod. Gripenberg 1.0338 . . . 4.0 s
dim = 2 random Gripenberg 1.0338 . . . 4.3 s
s .m.p. = C30

0
C30 Gripenberg 1.0338 . . . 0.1 s

genetic 1.0215 . . . 6.6 s
C60 mod. invariant polytope 1.0168 . . . 4.0 s
J = 2 mod. Gripenberg 1.0168 . . . 3.1 s
dim = 2 random Gripenberg 1.0168 . . . 4.3 s
s .m.p. = C60

0
C60 Gripenberg 1.0168 . . . 0.1 s

genetic 1.0000 . . . 6.3 s

values in {0, 1}, all of whose possible differences do not yield such a forbidden pattern. Clearly,

one wants codes which constrain the number of all possible patterns as least as possible. We are

interested in how constraining a given forbidden difference pattern is, which we denote as the

capacity capD ∈ [0, 1]. The larger the capacity, the better. This problem can be expressed in

terms of the JSR of a finite set of matrices. See [28] for more details. The occurring matrices in

this application only have entries in {0, 1}, but their dimension, as well as the number of matrices

increases exponentially with the length of the forbidden difference patterns, e.g. for D = {◦ + − }

the capacity of D is given by

capD = log
2
JSR

({ 
1 0 1 0

0 0 0 0

0 1 0 1

0 1 0 1

 ,

1 0 1 0

0 0 1 0

0 1 0 0

0 1 0 1

 ,

1 0 1 0

1 0 0 0

0 0 0 1

0 1 0 1

 ,

1 0 1 0

1 0 1 0

0 0 0 0

0 1 0 1


})
.

We use the modified invariant polytope algorithm to compute the capacities for the forbidden

difference patterns D taken from [28, p. 10], [4, Table 1], [7, p. 6] and for difference sets with the

additional symbol ± , denoting +1 and −1, discussed in [7, Section v]. Nearly all of these capacities

were not known exactly before.

For most difference sets D, there are several s.m.p.s., that not only share the same leading

eigenvalue but also the same eigenvector. Due to this reason, the modified invariant polytope

algorithm 4.1 sometimes only gives a bound for the JSR up to the accuracy in which we can compute

the norms ∥Ãjv ∥co∗W . We implemented the Matlab routine codecapacity which computes the set

of matrices needed for the JSR computation for a given difference set D. It works for reasonably
small difference sets, and theoretically also for difference words with entries in {−K, . . . ,K}, K ∈ N.

The exact computation of the capacity using the modified invariant polytope algorithm 4.1 was

only possible if we used the estimates for the Minkowski norm in Lemma 5 (1.2), which reduced

the norms to be computed by a factor of 100.
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Table 6. Capacity of various difference sets D. ϵ = 10
−10: computational accuracy, cap(D): capacity, D: set of

forbidden differences, dim: dimension of the matrices, J : number of matrices, #V : number of vertices of the
invariant polytope, s.m.p.: an s.m.p..
?For some sets D the modified invariant polytope algorithm 4.1 did not terminate, thus the given product is
not proven to be an s.m.p.

D s.m.p. cap(D) #V J dim

± ± B2B3 1/2 3 · 2 4 2

◦ ± B3 0 2 · 2 4 2

◦ + − B4B1 0.6942 . . . 45 · 2 4 4

◦ + + B2

?
0.6942 . . . + [0, ϵ] 25 · 2 4 4

◦ ± ± B1B2 1/2 37 · 2 16 4

± ± ± B6B4B1 2/3 19 · 2 16 4

+ − + − B1B2 0.9468 . . . 86 · 2 2 8

+ + + − B1B2 0.9005 . . . 40 · 2 2 8

+ + + + B1 0.9468 . . . 84 · 2 2 8

◦ + − + B3 0.8791 . . . 43 · 2 4 8

◦ + + − B3 0.8113 . . . 46 · 2 4 8

◦ + + + B1 0.8791 . . . 46 · 2 4 8

◦ + + ± B2

1
B2

2
0.7396 . . . 244 · 2 16 8

◦ + ◦ + B4B
2

11
B13B

2

6
0.7298 . . . 804 · 2 16 8

◦ + ◦ ± B16B52B103

?
2/3 + [0, ϵ] 23152 · 2 256 8

± ± ± ± B86B52B16B1 3/4 357 · 2 256 8

◦ + − + ◦ B11B13 0.9163 . . . 1721 · 2 16 16

◦ + + + ◦ B4B6 0.9163 . . . 4559 · 2 16 16

◦ + + + + ◦ B2

?
0.9614 . . . + [0, ϵ] 17902 · 2 16 32

+ + + + + − ◦ B3 0.9761 . . . 992 · 2 4 64

Table 7. Performance of various algorithms searching for s.m.p.s for a particular hard problem. The modified
Gripenberg algorithm 3.1 fails for the set of matrices corresponding to the forbidden difference set D4 in
Section 5.4. dim: dimension of the matrices, lower bd.: computed lower bound for the JSR, J : number of
matrices, time: time needed by the algorithm.

Testset Algorithm lower bd. time
D4 = {◦◦+ ◦−} mod. invariant polytope 1.6736 . . . 40 s
J = 256 mod. Gripenberg 1.6663 . . . 2 s
dim = 16 random Gripenberg 1.6663 . . . 2 s

Gripenberg 1.6663 . . . 60 s
genetic 1.6736 . . . 10 s

The difference set D4 = {◦◦+ ◦−}, taken from [4, Table 1], is a good test case for the modified

Gripenberg algorithm, since the computation of the capacity translates to the JSR of a set with 256

matrices of dimension 16. As one can expect, Gripenberg’s algorithm fails to find an s.m.p., also the

modified Gripenberg algorithm 3.1 fails. The genetic algorithm in most cases finds a better product

than the one found by Gripenberg’s algorithm. The modified invariant polytope algorithm 4.1 also

finds that better product after a while, but it did not terminate in reasonable time. Thus, the exact

capacity, and whether an s.m.p. exists is still unknown. The test results are in Table 6 and 7.
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Fig. 5. Left: Number of vertices of the polytope #V against index of Daubechies wavelet Dn . Right: Difference
of regularities α of consecutive Daubechies wavelets.

5.5 Hölder exponents of Daubechies wavelets
An important application of the JSR is the computation of the regularity of refinable functions. These
are functions ϕ ∈ C0(R

s )which fulfil a functional equation of the form ϕ(x) =
∑

α ∈Zs a(α)ϕ(2x −α),
x ∈ R, with a ∈ ℓ0(Z

s ). We use the modified invariant polytope algorithm 4.1 to compute the Hölder

regularity of the Daubechies wavelets Dn [14]. The regularity of D2,D3, and D4 was computed

by Daubechies and Lagarias [15], Gripenberg [16] computed it for D5, . . . ,D8, then Guglielmi

and Protasov [19], as a demonstration of the original invariant polytope algorithm, computed the

regularity of D9, . . . ,D20. Now with the modified invariant polytope algorithm, we can compute

the Hölder regularity for Daubechies wavelets up to D42.

As noted in [19, Section 6.2], the polytopes generated by these matrices are very flat and the

introduction of nearly-candidates and extra-vertices tremendously increases the performance of the

invariant polytope algorithm. Respectively, using the wrong set of nearly-candidates, the modified

invariant polytope algorithm did not terminate at all. These cases are marked with † in Table 8.

The right nearly-candidates and extra-vertices, i.e. good values for τ , T , Bnearly and Bextra, were

merely found by trial and error. We report the number of extra-vertices and the vertices of the roots

from the nearly-s.m.p.s together under #Extra-V. The number of the invariant polytopes vertice’s is

depicted in Figure 5 (left side).

Remark 5.3. With the new values for D21 to D42 we can refine the observation in [18], that the

differences of Hölder regularities αn − αn−1 seem to converge towards a value of 0.21 or maybe

even 0.2, see Figure 5 (right side).

6 CONCLUSION AND FURTHERWORK
6.1 Conclusion
The modified Gripenberg algorithm 3.1 together with the modified invariant polytope algorithm 4.1

can compute the exact value of the JSR in a short time (less than 30 minutes) for most matrix

families up to dimension 22, in some cases even up to dimension 40. For matrices with non-negative

entries, the modified invariant polytope algorithm may work up to a dimension of 3000. Even more,

since the modified Gripenberg algorithm 3.1 finds in almost all cases a correct s.m.p., it may be

used alone for fast estimates of the JSR in time critical applications.

6.2 Further work
From the mathematical point of view, the question why the modified Gripenberg algorithm 3.1

works so well is of interest, in particular why it works mostly better than the random Gripenberg

algorithm. It also may be useful to search for better estimates for the Minkowski norms, e.g. with
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Table 8. Hölder regularity of Daubechies wavelets. α : Hölder regularity of Daubechies wavelet, Dn : index of
Daubechies wavelet, #V : number of vertices of the invariant polytope, #Extra-V : number of extra-vertices
including those from nearly-s.m.p.s., s.m.p.: an s.m.p., time: time needed to compute the invariant polytope.
For the cases marked with †, using the wrong set of nearly-candidates, the algorithm did not terminate at all.

Dn s.m.p. #Extra-V #V time α
2 B0 0 0·2 < 5 s 0.55001 . . .
3 B0 0 3·2 < 5 s 1.08783 . . .
4 B0 2 9·2 < 5 s 1.61793 . . .
5 B0 and B1 2 14·2 < 5 s 1.96896 . . .
6 B0 and B1 3 18·2 < 5 s 2.18914 . . .
7 B0 and B1 4 27·2 < 5 s 2.46041 . . .
8 B0 and B1 5 40·2 < 5 s 2.76082 . . .
9 B0 and B1 6 55·2 < 5 s 3.07361 . . .
10 B2

0
B2

1
5 147·2 < 5 s 3.36139 . . .

11 B0 and B1 8 123·2 7 s 3.60347 . . .
12 B0 and B1 9 91·2 7 s 3.83348 . . .
13 B0 and B1 10 105·2 6 s 4.07348 . . .
14 B0 and B1 11 134·2 8 s 4.31676 . . .
15 B4

0
B2

1
11 386·2 6 s 4.55612 . . .

16 B2

0
B2

1
12 346·2 7 s 4.78644 . . .

17 B0 and B1 14 324·2 5 s 5.01380 . . .
18 B0 and B1 15 282·2 8 s 5.23917 . . .
19 B0 and B1 16 346·2 9 s 5.46532 . . .
20 B0 and B1 17 529·2 12 s 5.69108 . . .
21 B2

0
B2

1
17 868·2 15 s 5.91500 . . .

22
† B2

0
B4

1
22 433·2 9 s 6.13779 . . .

23 B0 and B1 20 707·2 18 s 6.35958 . . .
24 B0 and B1 21 701·2 16 s 6.58096 . . .
25 B0 and B1 22 861·2 20 s 6.80198 . . .
26 B4

0
B2

1
22 2471·2 73 s 7.02250 . . .

27 B2

0
B2

1
29 2952·2 60 s 7.24241 . . .

28
† B2

0
B6

1
105 777·2 24 s 7.46187 . . .

29 B0 and B1 26 1545·2 39 s 7.68091 . . .
30 B0 and B1 27 2078·2 64 s 7.89962 . . .
31 B0 and B1 29 2898·2 190 s 8.11801 . . .
32 B2

0
B2

1
29 3791·2 760 s 8.33605 . . .

33
† B2

0
B2

1
30 4692·2 1330 s 8.55379 . . .

34 B0 and B1 32 3047·2 628 s 8.77123 . . .
35 B0 and B1 33 3191·2 727 s 8.98841 . . .
36 B0 and B1 34 3887·2 881 s 9.20533 . . .
37 B6

0
B2

1
70 8529·2 6503 s 9.42202 . . .

38 B2

0
B2

1
38 6035·2 3540 s 9.63847 . . .

39 B2

0
B4

1
40 7142·2 3900 s 9.85474 . . .

40 B0 and B1 38 6909·2 5550 s 10.07073 . . .
41 B0 and B1 39 8343·2 8743 s 10.28656 . . .
42 B0 and B1 40 9508·2 16373 s 10.50220 . . .
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orthant-monotonic norms, which would lead to a considerable speed up of the modified invariant

polytope algorithm.

From the algorithmic point of view, the modified invariant polytope algorithm could be made

faster by using approximate solutions to the LP-problem when computing the Minkowski-norms,

since the exact value of the norms is of minor interest — for the modified invariant polytope

algorithm it is enough to know whether a point is inside or outside of the polytope.

We plan to implement the case (C) of complex leading eigenvalue in the near future and optimize

the modified invariant polytope algorithm for a large number of parallel threads. Case (C) occurs
seldom, in the sense that we did not encounter a set of matrices of practical interest with complex

leading eigenvectors yet.
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