
host device - Generic programming in

Cuda

Thomas Mejstrik (Dimetor GmbH, Vienna, Austria; University of Vienna, Austria),
Sebastian Woblistin (Dimetor GmbH, Vienna, Austria)

April 23, 2024

Abstract

We propose language changes for simpler writing of generic templated
code which works both on the host and device side.

1 Motivation

When writing generic code in Cuda for both the device side (GPU), as well
the host side (CPU), one faces easily a problem: Some generic code only works
on one of the two sides. Yet, the Cuda language has no means of specifying
for which target something shall be instantiated. This leads in the best case
to (+) compiler errors, (◦) pages of compiler warnings (which then hide the
important warnings), (−) a program which compiles but crashes when run, or
in the worst case (−−) a program which has undefined behaviour. This proposal
discusses solutions how to solve this problem.

This paper collects some ideas how to solve this problem. Additionally, it
presents some ideas how to simplify writing code which shall run both on the
host and the device side.

The presented code examples and the names of the identifiers are just for
exposition. We do not propose a certain implementation, nor a specific set of
names.

1.1 Terminology

In the following, a stray function call will be either when a host function
calls a device function, or when a device or global function calls a
host function, If a host device function calls a host or device

function, we say it is a potential stray call.

1.2 The problem T

In Listing 1 the function wrap is templatized for some user defined type T (e.g.
a matrix class). In main, the function func is called with the type H. Thus both

1

Listing 1: Problem T� �
struct H {

__host__ int value () { return 3; }

};

struct D {

__device__ int value () { return 2; }

};

template < typename T >

__host__ __device__

int wrap() {

return T{}. value ();

}

int main() {

// return D{}. call (); // error

// return wrap < D >(); // no warning , UB

return wrap < H >(); // warning

}� �
the host and the device version of func is instantiated with the type H.
But, H’s function call is only a host function, and thus, when compiled with
nvcc we get the warning: “calling a host function ("H::call()") from a host

device function ("func< ::H> ") is not allowed”.
When we would instead call func< D >() we provoke undefined behaviour.1

When we would call D.call() nvcc 12 gives a compilation error. We call this
problem as Problem T.

We can observe two things here:

• nvcc 12 handles stray function calls inconsistently.

• It is hard to write generic Cuda code which works both on the CPU and
the GPU.

2 Current patterns to solve the problem

In this section we present patterns which solve problem T, or the problem of
porting existing code to Cuda. We also discuss why these solutions are not
satisfactory.

1a) On our test system, the value 1 is returned (instead of 2). b) Unfortunately, nvcc
(versions 9 to 12) does not emit any compiler warning for this example.

2

Listing 2: Solution: host device� �
struct S {

__host__ __device__

static void value () {}

};

template < typename T >

__host__ __device__

void func() {

T:: value ();

}

int main() {

func < S >();

}� �
2.1 host device everything

2.1.1 Context

Code shall be useable with Cuda and non Cuda compilers, and the code does
not contain any Cuda specific stuff.

2.1.2 Solution

We add host device annotations to all functions.

2.1.3 Assessment

− Not always possible. The host and device implementation may be different
or there may not be any implementation for either host or device code.

2.2 #ifdef blocks with CUDA ARCH

2.2.1 Context

Code shall be useable with Cuda and non-Cuda compilers, but the necessary
implementations differ.

2.2.2 Solution

Use the preprocessor macro CUDA ARCH to determine whether we are in device
or host code. If there is no sensible implementation for either host or device
code, we abort the program whenever we end up in the wrong path, see Listing 3.
In that listing, S::value() is (wrongly) called in device code, and thus a runtime
error on the GPU is triggered.

3

Listing 3: Solution: #ifdef block with CUDA ARCH� �
struct H {

__host__ __device__ // actually only a __host__ implementation ,

static void value () { // but annotated with __host__ __device__

#ifdef CUDA_ARCH // to silence compiler warnings

__trap ();

#endif

/* body */

}

};

template < typename T >

__global__

void kernel(T t) { t.value (); }

int main() {

kernel <<< 1, 1 >>>(H{});

return cudaDeviceSynchronize ();

}� �
2.2.3 Assessment

+ Easy to understand and use

− Source code is cluttered with preprocessor directives.

− Check for stray function calls is at runtime, not at compile time.

2.3 Pragmas #hd warning disable and #nv exec check disable

2.3.1 Context

One “knows” that a certain code path is not possible, and thus just wants to
disable compiler warnings.

2.3.2 Solution

The pragmas #hd warning disable and #nv exec check disable can be used.

2.3.3 Assessment

+ Easy to use

◦ Each function has to be annotated manually.

− These pragmas are undocumented

4

Listing 4: Solution: #pragma� �
struct S {

static void value () {}

};

#pragma hd_warning_disable

template < typename T >

__host__ __device__

void func() { T::value (); }

int main() {

func < S >();

}� �
− Wrong usage of these pragmas may lead to wrongly compiled code [1]

− May hide programming errors. A combination of using these pragmas
with release assert is thus recommended.

− Even when one “knows” that the pragmas can be used at the time when
the code is written, things may change in the future.

2.3.4 Known Usages

• Thrust

• Eigen

2.4 Experimental relaxed constexpr

2.4.1 Context

One has a function which is, or can be made, constexpr and one compiles with
nvcc.

2.4.2 Solution

We decorate the function with constexpr and compile with the option --expt-re-

laxed-constexpr. This allows device code to invoke host constexpr functions,
and host code to invoke device constexpr functions, see Listing 5.

We assert whether the source code is compiled with --expt-relaxed-const-

expr by checking whether the macro CUDACC RELAXED CONSTEXPR is defined, and
produce a compilation error when not. This way, the user is informed how to
correctly compile the program, when she attempts to compile it wrongly.

5

Listing 5: Solution: Experimental relaxed constexpr� �
#ifndef __CUDACC_RELAXED_CONSTEXPR__

#error "Must be compiled with:" \

"--expt -relaxed -constexpr"

#endif

struct S {

constexpr static int value() {

return 42;

}

};

template < typename T >

__global__

void kernel(T t) {

printf("%i", t.value ());

}

int main() {

kernel <<< 1, 1 >>>(S{});

return cudaDeviceSynchronize ();

}� �
2.4.3 Assessment

++ Is also applicable to third party constexpr function, e.g. functions in the
C++ standard library

+ Easy to use.

+ Needs minimal changes to the source code.

− Only applicable to constexpr functions.

− Is an experimental feature: It is experimental since at least Cuda 8.0 from
2016. The behaviour of this option may change in future Cuda releases.

− The source code is not self contained any more, but needs to be compiled
with certain compiler flags.

− It is unclear, whether this feature is compatible with future C++ versions.2

− Only works with nvcc.

2Currently, Each new C++ standard softens the restrictions to constexpr functions E.g.,
C++20 allows memory allocations in constexpr functions.

6

2.4.4 Known Usages

• LBANN [2] uses a defensive strategy: Is the source compiled with --expt--

relaxed-constexpr they annotate functions with constexpr, otherwise they
annotate them with host device .

2.5 SFINAE

This is the pattern which solves the problem mostly. But it involves ugly macros,
and thus has some severe drawbacks.

2.5.1 Context

We want to make sure at compile time that a function, which is either usable
on the host or device side, is only called on the host or device side.

2.5.2 Solution

We define three versions of the same function – a host , a device , and a
host device function – and make it such that always only one (the one

that we need) is well formed, and thus can be called. In particular, the compiler
cannot instantiate a wrong function and we do not get compiler warnings. If we
would try to do a stray function call we get a compilation error.

See Listing 6 which uses the trait hdc (see Section 3.1.1) to determine which
function needs to be called (for the macro DEPAREN see Listing 7).

2.5.3 Assessment

+ Easy to use

− Not straight forward to write and understand, and thus hard to maintain
in the long term.

− Code is not debuggable, since the body of the function is inside of a
macro.3

− Only works for template functions or functions of template classes.

− Only works when we can define the variable hdc in a sensible way, this
means effectively in a class.

− Code duplication. This is mitigated by the use of macros

− Code bloat and thus increased compilation times.

3We devised a version with a trampoline function, even more macro stuff, some boiler
plate code, and the use of the pragma #nv exec check disable to solve this problem. But we
refrain from presenting it here, since it is just an abuse of the language.

7

Listing 6: host device macro 3� �
template < typename T > static constexpr

HD hdc = hdc_impl < T >::hdc;

#define host_device_macro3(templateargs , hdc_ , body)

\

template < DEPAREN(templateargs), HDC hdc = DEPAREN(hdc_) >

\

requires(hdc == HDC::Hst) >

\

__host__ DEPAREN(body)

\

\

template < DEPAREN(templateargs), HDC hdc = DEPAREN(hdc_) >

\

requires(hdc == HDC::Dev) >

\

__device__ DEPAREN(body)

\

\

template < DEPAREN(templateargs), HDC hdc = DEPAREN(hdc_) >

\

requires(hdc == HDC:: HstDev) >

\

__host__ __device__ DEPAREN(body)

// Usage:

host_device_macro3((typename T),

(hdc < T >),

(void f3(T t) {}))

struct HD {

static constexpr HDC hdc = HDC:: HstDev;

};

void g3() {

f3(0); // calls host version

f3(HD{}); // calls device version

}� �

8

Listing 7: DEPAREN� �
// helper macro to remove parentheses from macro arguments.

#define DEPAREN(X) ESC(ISH X)

#define ISH(...) ISH __VA_ARGS__

#define ESC(...) ESC_(__VA_ARGS__)

#define ESC_(...) VAN ## __VA_ARGS__

#define VANISH

// usage example

DEPAREN((int)) a; // gives: int a;

DEPAREN(int) b; // gives: int b;� �
− nvcc 12 still has problems with requires clauses.4 Thus currently, this

pattern works only with C++11 SFINAE clauses (which make it even
more ugly), and which do not work for non-template functions (like copy
constructors).

2.6 Summary

From the presented patterns we infer that, there is none solution which

+ is debuggable

+ is easy to write and use

+ does not need code duplication

+ does not need lots of boiler plate code

+ is applicable to third party code

+ is easily applied to an existing code base

+ is easy to understand

+ does not use the preprocessor

+ does all stray function call checks at compile time

+ does not use undocumented features of Cuda

+ does not use experimental features of Cuda

+ does not need special compiler flags

+ does not provoke UB when used incorrectly

4See open bug report XX id .

9

3 Proposals of language changes

We now propose changes to the Cuda language to solve the problem. Most
of the proposals are mutually independent from each other (in other words:
orthogonal).

3.1 Proposal 1: Conditional host device

This solution is inspired by pattern SFINAE. The solution partly solves the
problem, needs minimal language changes, and does not introduce any breaking
change to the language.

3.1.1 Host Device compatibility trait hdc

hdc< T > inspects for the given type T, whether a member variable of name
T::hdc is present. If so, then hdc< T > returns its value. Otherwise it returns
HDC::Hst, see Listing 8.

Controversies

• It is unclear whether hdc for fundamental types (int, pointers, ...) should
return HDC::HstDev or HDC::Hst.

• It is unclear whether this trait should be provided by the cuda library, or
should be written by the user.

3.1.2 Conditional host device

We propose that device (and host) annotations accept a boolean param-
eter. If a parameter is given , and it is false, then the function is not compiled
for host (or device).5 See Listing 9 how to use it to solve our Problem T
from the beginning.

3.1.3 Assessment

+ This is a pure language extension, such syntax is ill-formed today, and no
existing code will break.

+ Easy to use.

3.2 Proposal 2: More versatile host device decorators

This does not solve the problem, but allows to easily port code to Cuda.

5A similar approach is taken in C++ with the noexcept, or the explicit (C++20) key-
word, which also takes an optional boolean argument.

10

Listing 8: Host Device compatibility: hdc� �
#include <type_traits >

template < typename T >

concept has_hdc = requires(T t) { &T::hdc; };

enum class HDC {

Hst , Dev , HstDev

};

template < typename T >

struct hdc_impl {

struct h {

static constexpr HDC hdc = HD::Hst;

};

static constexpr HDC hdc =

std:: conditional_t < has_hdc <T>, T, h >::hdc;

};

template < typename T > static constexpr

HD hdc = hdc_impl < T >::hdc;

// Usage example

struct S {};

struct D {

static constexpr HDC hdc = HDC::Dev;

};

static_assert(hdc <S> == HDC::Hst);

static_assert(hdc <D> == HDC::Dev);� �

11

Listing 9: Proposal 1� �
struct H {

__host__ void call() {}

};

struct D {

HDC hdc = HDC::Dev;

__device__ void call() {}

};

template < typename T >

__host__(hdc <T> == Hst::Hst) __device__(hdc <T> == Hst::Dev)

void wrap() {

T{}. call ();

}

int main() {

// wrap < D >(); // error

wrap < H >(); // OK

}� �
3.2.1 Allowing host device decorations for classes and names-

paces

If a class (or namespace) is decorated with device (or host device),
then all its undecorated member functions become automatically device (or
host device) member functions.
If a function cannot be implicitly decorated, then the compilation fails.
For example, the two classes S1 and S2 in Listing 10 are equivalent.

Controversies

• Listing 10, one could also argue that S1 :: init should be host de-

vice function. But we think that the host annotations is spatially

Listing 10: host device decorations for classes and namespaces� �
__device__ class S1 {

void call ();

__host__ void init ();

};

class S2 {

__device__ void call ();

__host__ void init ();

};� �
12

nearer to the function declaration, and thus takes precedence over de-

vice . Furthermore, if the host and device annotations would add
up, it would not be possible to define a pure host function inside of
class S1 any more. This would obviously be a bad design decision, and
thus users will not think that the language behaves in this way.

• One could argue, that global annotations should also be allowed before
a class or a namespace. But, kernels play are very special role in Cuda
programming, so we do not see a need for that feature currently For dy-
namic parallelism one usually needs to rewrite a lot of code until it works
performant, and thus this is not a useful feature there either.

• It is unclear, whether host device annotations should be allowed
in forward declarations of classes or not, and if they are allowed whether
they should be ignored or not.

Assessment

+ This is a pure language extension, such syntax is ill-formed today, and no
existing code will break.

+ Allowing decorations on classes allows to port code more easily to Cuda.

− Apart from the syntactic problems described in Controversies, we could
not find any downsides so far.

3.3 Proposal 3: Propagation of host device

This proposal solves our problem, but also needs more language changes. It
also imposes more restrictions to the programming style. In particular, a lot of
functions must go to a header file.

3.3.1 Including host device in the signature of the function

We propose that the function execution space specifiers are part of the signature.
Then, one can get rid of using the CUDA ARCH macro in cases where the host
and device part need different code, see Listing 11.

The function g calls f/*(1)*/ when g is compiled for host code, and calls
f/*(2)*/ when g is compiled for device code.6

Assessment

+ Adding the host device decorators to the function signature simpli-
fies learning Cuda. Often novices of Cuda/C++ think that the host

device annotations are part of the function signature.

6For the nvcc compiler the host , device annotations are not part of the function
signature; whereas clang considers them to be part of the signature.

13

Listing 11: host device as part of the function signature� �
__host__ void f/*(1)*/() {}

__device__ void f/*(2)*/() {}

__host__ __device__ void g() {

func ();

}� �
− Errors may not be detectable until link time (as it is now).

− Is an ABI break.

3.3.2 Propagation of host device

If a device or global , (or host device) function calls an undecorated
function (or an undecorated member function in an undecorated class), it be-
comes automatically a device (or host device) function. If a device ,
or global , (or host device) function calls an undecorated templated
(member) function, then this function is instantiated as a device (or host

device) function.
This implies,
(1) that the host and device annotations need to be part of the func-

tion signature, (otherwise the compiler cannot decide which function to call),
and

(2) that the definition of the function must be present to compiler whenever
the function is invoked (otherwise, the compiler does not know which functions
shall be instantiated and a linker error occurs). Thus, most functions must go
to header files. To mitigate this shortcoming, one could allow explicit host

and device instantiations.7

Assessment

+ Needs no further work from the user.

+ Is applicable to third party code, in particular everything in std::.

+ Functions for which the execution space shall not get deduced are still
possible, by explicitly adding annotations.

+ Speeds up compilation times, since less functions need to be compiled

◦ If an already existing program has stray function calls, this proposal may
change its behaviour. For correct programs, this proposal does not change
the behaviour.

7The explicit instantiation would be similar to explicit C++ template function instantia-
tions.

14

◦ Functions then behave similar to template functions with all implications.
This is not that of a big deal, since this feature is mostly necessary for
template functions anyway.

◦ Needs that host device annotations must be part of the function
signatures with all implications.

− Could lead to bad user code, since users could assume that just because it
works it is also efficient, whereas an efficient implementation of a function
often is different on the GPU or CPU side.

3.4 Proposal 4: Strict handling of stray calls

This does not solve the problem, but leads to better compiler warnings/errors,
and thus to a better developing experience.

3.4.1 Forbid stray function calls

We propose that the compiler shall handle stray function calls consistently and
strictly. In particular, every stray call (host to a device function or de-

vice to a host function) shall be a compiler error. Every potential stray
call (host device to a host or device) shall be at least a compiler
warning.8

Controversies It is unclear what to do with potential stray calls. Emitting
a compiler warning feels like the most natural solution.

Another solution would be to make it to a compiler error, but provide two
pragmas to lower the severity to a warning, or to disable the error/warning.

Assessment

+ Consistent behaviour regarding stray function calls.

3.4.2 Solution

See Listing 12 how to use this proposal to solve our Problem T from the begin-
ning.

8The authors are wondering, whether the inconsistencies in the stray function call handling
(see Listing 1) are due to a special handling of cases of templated host device functions,
(which easily produce such warnings). This seems likely, because, if each stray function call
were a compilation error, it would be nearly impossible to write generic Cuda code.

With this proposal, templated host device functions can easily and cleanly be im-
plemented. Special handling would then not be required any more, and thus the compiler
then could more easily identify stray calls.

15

Listing 12: Proposal 2� �
struct S {

void call() {}

};

__host__ struct H {

void call() {}

};

__device__ struct D {

HDC hdc = HDC::Dev;

void call() {}

};

template < typename T >

void wrap() {

return T{}. call ();

}

__global__ void kernel () {

wrap < S >(); // OK

wrap < H >(); // error

}

int main() {

// wrap < D >(); // error

wrap < H >(); // OK

}� �

16

References

[1] konstantin a, #pragma hd warning disable causes nvcc to generate incor-
rect code (cuda 9.1)., forums.developer.nvidia.com/t/57755.

[2] LLNL, LBANN: Livermore Big Artificial Neural Network Toolkit, git-
hub.com/LLNL/lbann.

17

https://forums.developer.nvidia.com/t/pragma-hd-warning-disable-causes-nvcc-to-generate-incorrect-code-cuda-9-1/57755
https://github.com/LLNL/lbann
https://github.com/LLNL/lbann

	Motivation
	Terminology
	The problem T

	Current patterns to solve the problem
	`__host__` `__device__` everything
	Context
	Solution
	Assessment

	`#ifdef` blocks with `__CUDA_ARCH__`
	Context
	Solution
	Assessment

	Pragmas `#hd_warning_disable` and `#nv_exec_check_disable`
	Context
	Solution
	Assessment
	Known Usages

	Experimental relaxed constexpr
	Context
	Solution
	Assessment
	Known Usages

	SFINAE
	Context
	Solution
	Assessment

	Summary

	Proposals of language changes
	Proposal 1: Conditional `__host__` `__device__`
	Host Device compatibility trait `hdc`
	 Conditional `__host__` `__device__`
	Assessment

	Proposal 2: More versatile `__host__` `__device__` decorators
	Allowing `__host__` `__device__` decorations for classes and namespaces

	Proposal 3: Propagation of `__host__` `__device__`
	Including `__host__` `__device__` in the signature of the function
	Propagation of `__host__` `__device__`

	Proposal 4: Strict handling of stray calls
	Forbid stray function calls
	Solution

