

A JSR primer and the feta flavoured IPA Höchst, 14th-15th March 2022

2022-03-14 Thomas Mejstrik

History

Gian-Carlo Rota, Gilbert Strang, A note on the joint spectral radius, 1960

The notion of joint spectral radius of a set of elements of a normed algebra, introduced below, was obtained in thecourse of some work in matrix theory. It was later noticed that the same considerations are valid in any normed algebra, irrespective of dimension. The notion seems to be useful enough in certain contexts to warrant the following elementary discussion.

Ingrid Daubechies, Jeffrey C. Lagaris, Sets of Matrices All Infinite Products of Which Converge, 1992

An infinite product $\prod_{i=1}^{\infty} M_i$ of matrices converges (on the right) if $\lim_{i\to\infty} M_1 \cdots M_i$ exists. [...] Such sets of matrices arise in constructing self-similar objects like von Koch's snowflake curve, in various interpolation schemes, in constructing wavelets of compact support, and in studying nonhomogeneous Markov chains. This paper gives necessary conditions and also some sufficient [...]

History

History

Basics

Theorem (Spectral radius, Israel Gelfand, 1941)

 $\rho(A) = \lim_{n \to \infty} ||A^n||^{1/n}.$

Theorem (Spectral radius, Israel Gelfand, 1941)

 $\rho(A) = \lim_{n \to \infty} ||A^n||^{1/n}.$

Definition (Sub multiplicativity)

 $||AB|| \le ||A|| \, ||B||$

Definition (*JSR*, Gian-Carlo Rota, Gilbert Strang, 1960)

 $\mathsf{JSR}(\mathcal{A}) := \lim_{n \to \infty} \max_{A_j \in \mathcal{A}} ||A_{j_n} \cdots A_{j_1}||^{1/n}, \quad \mathcal{A} \subseteq \mathbb{R}^{s \times s}, \text{ bounded}$

Picture from: Raphaël M. Jungers, The Joint Spectral Radius, 2009

Picture from: Raphaël M. Jungers, The Joint Spectral Radius, 2009

Example

Example

$$A_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathcal{A} = \{A_1, A_2\}$$
$$\mathsf{JSR}(\mathcal{A}) = 1 \qquad \qquad (A_1 A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}).$$

 $\rho(A_1)=\rho(A_2)=0.$

Definition

$$\mathsf{JSR}(\mathcal{A}) := \lim_{n \to \infty} \max_{\mathcal{A}_j \in \mathcal{A}} ||\mathcal{A}_{j_n} \cdots \mathcal{A}_{j_1}||^{1/n}$$

□ Scaling:
$$JSR(\lambda A) = \lambda JSR(A), \lambda \in \mathbb{R}$$
.

Definition

$$\mathsf{JSR}(\mathcal{A}) := \lim_{n \to \infty} \max_{A_j \in \mathcal{A}} ||A_{j_n} \cdots A_{j_1}||^{1/r}$$

- $\Box \text{ Scaling: } \mathsf{JSR}(\lambda \mathcal{A}) = \lambda \text{ } \mathsf{JSR}(\mathcal{A}), \lambda \in \mathbb{R}.$
- \square Basis: JSR(VAV^{-1}) = JSR(A)

Definition

$$\mathsf{JSR}(\mathcal{A}) := \lim_{n \to \infty} \max_{A_j \in \mathcal{A}} ||A_{j_n} \cdots A_{j_1}||^{1/r}$$

- $\Box \text{ Scaling: } \mathsf{JSR}(\lambda \mathcal{A}) = \lambda \text{ } \mathsf{JSR}(\mathcal{A}), \lambda \in \mathbb{R}.$
- $\square Basis: JSR(VAV^{-1}) = JSR(A)$
- $\Box \ \mathsf{JSR}(\mathcal{A}) = \mathsf{JSR}(\mathsf{co}\,\mathcal{A}) = \mathsf{JSR}(\mathsf{cl}\,\mathcal{A}).$

Definition

$$\mathsf{JSR}(\mathcal{A}) := \lim_{n \to \infty} \max_{A_j \in \mathcal{A}} ||A_{j_n} \cdots A_{j_1}||^{1/r}$$

- $\Box \text{ Scaling: } \mathsf{JSR}(\lambda \mathcal{A}) = \lambda \text{ } \mathsf{JSR}(\mathcal{A}), \lambda \in \mathbb{R}.$
- $\square Basis: JSR(VAV^{-1}) = JSR(A)$
- $\Box \ \mathsf{JSR}(\mathcal{A}) = \mathsf{JSR}(\mathsf{co}\,\mathcal{A}) = \mathsf{JSR}(\mathsf{cl}\,\mathcal{A}).$

Basic properties: Infimum of norms

Theorem

$$\mathsf{JSR}(\mathcal{A}) = \mathsf{inf}_{||\cdot||} \sup_{A \in \mathcal{A}} ||A||$$

Proof.

$$\Box \text{ Let } \varepsilon > 0, \ \tilde{\mathcal{A}} = (\text{JSR}(\mathcal{A}) + \varepsilon)^{-1}\mathcal{A}$$
$$\Box ||v||_{\varepsilon} = \max_{n \in \mathbb{N}_0} \left\| \tilde{A}_{j_n} \cdots \tilde{A}_{j_1} v \right\|_2$$
$$\Box \left\| \tilde{A} \right\|_{\varepsilon} \le 1 \text{ for all } \tilde{A} \in \tilde{\mathcal{A}}$$
$$\Box ||\mathcal{A}||_{\varepsilon} \le \text{JSR}(\mathcal{A}) + \varepsilon$$

Basic properties: Infimum of norms

Theorem

$$\mathsf{JSR}(\mathcal{A}) = \mathsf{inf}_{||\cdot||} \sup_{A \in \mathcal{A}} ||A||$$

Proof.

$$\begin{array}{l} \square \text{ Let } \varepsilon > 0, \ \tilde{\mathcal{A}} = (\mathsf{JSR}(\mathcal{A}) + \varepsilon)^{-1}\mathcal{A} \\ \square \||v\|_{\varepsilon} = \max_{n \in \mathbb{N}_0} \left\| \tilde{A}_{j_n} \cdots \tilde{A}_{j_1} v \right\|_2 \\ \square \left\| \tilde{A} \right\|_{\varepsilon} \le 1 \text{ for all } \tilde{A} \in \tilde{\mathcal{A}} \\ \square \||A\||_{\varepsilon} \le \mathsf{JSR}(\mathcal{A}) + \varepsilon \end{array}$$

Corollary

JSR is continuous in ${\cal A}$

Corollary

Numerical computation makes sense.

Definition (Irreducibility)

• If there exists $V \in \mathbb{R}^{s \times s}$ such that $VA_jV^{-1} = \begin{vmatrix} B_j & C_j \\ 0 & D_i \end{vmatrix}$ for all

 $A_j \in \mathcal{A}$, then \mathcal{A} is reducible. In other words: There exists no common invariant subspace (except {0} and \mathbb{R}^s).

Theorem

If \mathcal{A} is reducible, then $JSR(\mathcal{A}) = max \{ JSR(\mathcal{B}), JSR(\mathcal{D}) \}$.

Interesting properties

Interesting property: Generalized JSR

Theorem (The JSR theorem, [BW92])

If ${\mathcal A}$ is bounded, then

$$\mathsf{JSR}(\mathcal{A}) = \limsup_{n \to \infty} \rho(A_{j_n} \cdots A_{j_1})^{1/n}$$

Interesting property: Three member inequality

Theorem ([DL])

$$\max_{A_j \in \mathcal{A}} \rho \left(A_{j_k} \cdots A_{j_1} \right)^{1/k} \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{A_j \in \mathcal{A}} ||A_{j_k} \cdots A_{j_1}||^{1/k}.$$

Interesting property: Three member inequality

Theorem ([DL])

$$\max_{A_j \in \mathcal{A}} \rho \left(A_{j_k} \cdots A_{j_1} \right)^{1/k} \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{A_j \in \mathcal{A}} ||A_{j_k} \cdots A_{j_1}||^{1/k}.$$

Corollary

$$\max_{A \in \mathcal{A}} \rho(A) \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{A \in \mathcal{A}} ||A|| \,.$$

Theorem ([BW92])

Given a bounded set of matrices $\mathcal{A} \subseteq \mathbb{R}^{s \times s}$. For $v \in \mathbb{R}^{s}$ define

$$P(v) = \operatorname{co} \bigcup_{A_j \in \mathcal{A}, n \in \mathbb{N}} \{\pm A_{j_n} \dots A_{j_1} v\}.$$

- If $JSR(A) \ge 1$ and for some $v \in \mathbb{R}^s$ the set P(v) is bounded and has non-empty interior, then A is irreducible and JSR(A) = 1.
- 2 If \mathcal{A} is irreducible and $JSR(\mathcal{A}) = 1$, then P(v) is a bounded subset of \mathbb{R}^s for any $v \in \mathbb{R}^s$.

Theorem ([BW92])

Given a bounded set of matrices $\mathcal{A} \subseteq \mathbb{R}^{s \times s}$. For $v \in \mathbb{R}^{s}$ define

$$P(v) = \operatorname{co} \bigcup_{A_j \in \mathcal{A}, n \in \mathbb{N}} \{\pm A_{j_n} \dots A_{j_1} v\}.$$

- If $JSR(A) \ge 1$ and for some $v \in \mathbb{R}^s$ the set P(v) is bounded and has non-empty interior, then A is irreducible and JSR(A) = 1.
- 2 If \mathcal{A} is irreducible and $JSR(\mathcal{A}) = 1$, then P(v) is a bounded subset of \mathbb{R}^s for any $v \in \mathbb{R}^s$.

$$\rightarrow P(v)$$
 is the unit ball of a norm

Interesting property: Finiteness conj. [LW95]

Definition (s.m.p.)

- □ If there exists $\Pi = A_{j_N} \cdots A_{j_1}$ such that $\rho(\Pi)^{1/N} = \text{JSR}(\mathcal{A})$, the set \mathcal{A} possesses the finiteness property.
- \square Π is called an spectral maximizing product (s.m.p.).

Interesting property: Finiteness conj. [LW95]

Definition (s.m.p.)

□ If there exists $\Pi = A_{j_N} \cdots A_{j_1}$ such that $\rho(\Pi)^{1/N} = \text{JSR}(\mathcal{A})$, the set \mathcal{A} possesses the *finiteness property*.

 \square Π is called an spectral maximizing product (s.m.p.).

Theorem (Finiteness property, [BM02, HST10])

There exist infinite many values α ∈ [0, 1] for which {[1 1], α[1 0]} does not posses the finiteness property.
An explicit value is (¿α₀ ∈ ℝ or ℚ?)

 $\alpha_0 = 0.749326546330367557943961948091344672091327\dots$

Interesting property: Irreducibility + Finiteness pr.

Definition

For any s.m.p. Π:

$$\Pi \simeq V \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \lambda_K & 0 \\ 0 & 0 & 0 & T \end{bmatrix} V^{-1}, \quad \rho(T) < |\lambda_k|, \ T: \text{ triangular.}$$

$\Box \lambda_k$ are leading eigenvalues

Corresponding eigenvectors are *leading eigenvectors*

Theorem (GP2016)

Given irreducible $\mathcal{A} \subseteq \mathbb{R}^{s \times s}$, JSR(\mathcal{A}) = 1, s.m.p. Π , with leading right/left eigenvectors $v \in \mathbb{R}^{s}$, $w \in \mathbb{R}^{1 \times s}$,

$$\begin{aligned} & \Pi \mathbf{v} = \lambda \mathbf{v} \\ & \mathbf{w} \Pi = \lambda \mathbf{w} \end{aligned} , \ |\lambda| = 1.$$

Then,¹ $(v, w^T) \neq 0$ $P(v) \subseteq \left\{ x \in \mathbb{R}^s : (w^T, x) \le (v, x) \right\}$

¹This statement could be wrong if $v \in \mathbb{C}^{s}$.

$$\begin{aligned} A_1 &= \lambda^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}, \quad A_2 &= \lambda^{-1} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \quad \lambda = 4\sqrt{3} + 7 \\ \mathcal{A} &= \{A_1, A_2\} \\ \Pi &= A_2 A_1 A_2^2 A_1 A_2 A_1^2, \quad \rho(\Pi) = 1 \\ \mathbf{v} &= \begin{bmatrix} \sqrt{3} + 1 & 1 \end{bmatrix}^T, \quad \mathbf{w} = \begin{bmatrix} (\sqrt{3} + 1)/2 & 1 \end{bmatrix} \end{aligned}$$

Example: Unit ball of a norm

Example: Unit ball of a norm

Example: Unit ball of a norm

Interesting property: Spectral gap

Definition

Given bounded $\mathcal{A} \subseteq \mathbb{R}^{s \times s}$ with $\rho = \mathsf{JSR}(\mathcal{A}) > 0$, and let $\tilde{\mathcal{A}} = \{A_j / \rho : A_j \in \mathcal{A}\}.$ \mathcal{A} has a spectral gap if for every product $\tilde{\Pi} = \tilde{A}_{i_0} \cdots \tilde{A}_{i_1}, \tilde{A}_j \in \tilde{\mathcal{A}},$

which is not an s.m.p., there exists $\gamma < 1$ such that $\rho(\vec{\Pi}) < \gamma$.

Computing the JSR

Computing the JSR: Algorithms

- Lower bounds (Modified Gripenberg [M], Genetic [Chang])
- Upper bounds
- □ Lower and upper bounds

Computing the JSR: Algorithms

- Lower bounds (Modified Gripenberg [M], Genetic [Chang])
- Upper bounds
- Lower and upper bounds
- □ Approximate computations
- □ Exact computations ([MR], ☎[GMPWZ...])

Computing the JSR: Algorithms

- Lower bounds (Modified Gripenberg [M], Genetic [Chang])
- Upper bounds
- Lower and upper bounds
- Approximate computations
- Brute force ([Brutus 42BC])
- Divide et impera ([Philipp II, 336BC], Gripenberg, Mod. Grip., is)
- \square Choose family of norms and search for the best (sos [PJ08], **b**)
- Other stuff (pathcomplete [Parrilo, Roozbehani])

$$\max_{(j)\in\{1,...,J\}^k} \rho(A_{j_k}\cdots A_{j_1})^{1/k} \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{(j)\in\{1,...,J\}^k} ||A_{j_k}\cdots A_{j_1}||^{1/k}.$$

$$\max_{(j)\in\{1,...,J\}^{k}} \rho(A_{j_{k}}\cdots A_{j_{1}})^{1/k} \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{(j)\in\{1,...,J\}^{k}} ||A_{j_{k}}\cdots A_{j_{1}}||^{1/k}.$$

Given $\mathcal{A} = \{A_j \in \mathbb{R}^{s \times s} : j = 1, \dots, J\}.$

$$\max_{(j)\in\{1,...,J\}^{k}} \rho(A_{j_{k}}\cdots A_{j_{1}})^{1/k} \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{(j)\in\{1,...,J\}^{k}} ||A_{j_{k}}\cdots A_{j_{1}}||^{1/k}.$$

Given
$$\mathcal{A} = \{ \mathcal{A}_j \in \mathbb{R}^{s \times s} : j = 1, \dots, J \}.$$

• Gripenberg algorithm sorts out matrix products, which are proven to have averaged spectral radius less than the joint spectral radius of the given set.

$$\max_{(j)\in\{1,...,J\}^k} \rho(A_{j_k}\cdots A_{j_1})^{1/k} \leq \mathsf{JSR}(\mathcal{A}) \leq \max_{(j)\in\{1,...,J\}^k} ||A_{j_k}\cdots A_{j_1}||^{1/k}.$$

Given
$$\mathcal{A} = \{ \mathcal{A}_j \in \mathbb{R}^{s \times s} : j = 1, \dots, J \}.$$

• Gripenberg algorithm sorts out matrix products, which are proven to have averaged spectral radius less than the joint spectral radius of the given set.

• Number of matrix products to be computed are kept reasonably small.

Modified Gripenberg algorithm [M.], based on

$$\max_{(j)\in\{1,\ldots,J\}^k} \rho(A_{j_k}\cdots A_{j_1})^{1/k} \leq \mathsf{JSR}(\mathcal{A}).$$

Given
$$\mathcal{A} = \{ \mathcal{A}_j \in \mathbb{R}^{s \times s} : j = 1, \dots, J \}.$$

• Modified Gripenberg algorithm sorts out matrix products, of which we hope that they have averaged spectral radius less than the joint spectral radius of the given set.

• Number of matrix products to be computed are kept bounded.

Examples: Modified Gripenberg algorithm

 $\mathcal{A} = \{A_j \in \mathbb{R}^{8 imes 8} : ext{random entries}, j = 1, \dots, 8\}$ 100 test runs

Algorithm	time	success
mod. Gripenberg	5.4 <i>s</i>	100%
Gripenberg	82.1 <i>s</i>	100%
genetic	12.0 <i>s</i>	87%
brute force	180.0 <i>s</i>	74%

success: success rate of finding a product which attains the JSR. *time*: runtime

□ How does it work?

□ How does it work?

□ Why does it work?

Theorem (🛍 [GP])

Given finite $\mathcal{A} \subseteq \mathbb{R}^{s \times s}$, with a spectral gap, finitely many s.m.p.s, and each of which having a unique leading eigenvalue λ_i . Then there exist leading eigenvectors v_i such that

 $co \bigcup P(v_i)$

has finitely many vertices.

□ How does it work?

Computation: 🞰

□ How does it work? Given:

- Sheep milk
- 🗖 max. 30% Goat milk
- Rennet (dt.: Lab)
- Salt water, 7%

\Box How does it work? Given: \mathcal{A} , $|| \cdot ||$, Π .

\Box How does it work? Given: A, $|| \cdot ||$, Π .

\Box How does it work? Given: A, $|| \cdot ||$, Π .

\Box How does it work? Given: A, $|| \cdot ||$, Π .

Computation: 📾

□ Why does it work?

Theorem (🞰 [MR])

Given finite $\mathcal{A} \subseteq \mathbb{R}^{s \times s}$, with a spectral gap and one s.m.p.s, then there exists a finite expressible tree.

□ Termination criteria:

	<u>ل</u>	(*************************************
#s.m.p.s	finitely many	1
# leading eigenvectors	1/s.m.p.	arbitrary
spectral gap	necessary	necessary

🗆 Current work: 🗟 flavoured 🛍

Examples from Applications

Hölder regularity α of Daubechies wavelets

Hölder regularity α of Daubechies wavelets

Daubechies Lagarias [92]: Gripenberg [96]: Guglielmi, Protasov [16]: M.:

Hölder regularity α of Daubechies wavelets

n	α	20	5.69108	40	10.07073	60	$\leq 14.35900\ldots$	8
1	0	21	5.91500	41	10.28656	61	\leq 14.57219	8
2	0.55001	22	6.13779	42	10.50220	62	\leq 14.78531	8
3	1.08783	23	6.35958	43	$\leq 10.71766\ldots$	63	\leq 14.99833	8
4	1.61793	24	6.58096	44	$\leq 10.93295\ldots$	64	$\leq 15.21127\ldots$	8
5	1.96896	25	6.80198	45	$\leq 11.14807\ldots$	65	$\leq 15.42413\ldots$	8
6	2.18914	26	7.02250	46	$\leq 11.36304\ldots$	66	$\leq 15.63692\ldots$	8
7	2.46041	27	7.24241	47	$\leq 11.57785\ldots$	67	$\leq 15.84962\ldots$	8
8	2.76082	28	7.46187	48	$\leq 11.79252\ldots$	68	$\leq 16.06226\ldots$	8
9 /	3.07361	29	7.68091	49	$\leq 12.00705\ldots$	69	$\leq 16.27482\ldots$	8
10	3.36139	30	7.89962	40	$\leq 12.22144\ldots$	70	\leq 16.48731	9
11	3.60347	31	8.11801	51	$\leq 12.43571\ldots$	71	$\leq 16.69973\ldots$	9
/12	3.83348	32	8.33605	52	$\leq 12.64985\ldots$	72	$\leq 16.91209\ldots$	9
13	4.07348	33	8.55379	53	$\leq 12.86387\ldots$	73	$\leq 17.12438\ldots$	9
14	4.31676	34	8.77123	54	≤ 13.07778	74	$\leq 17.33661\ldots$	9
15	4.55612	35	8.98841	55	\leq 13.29157	75	$\leq 17.54878\ldots$	9
16	4.78644	36	9.20533	56	$\leq 13.50526\ldots$	76	$\leq 17.76089\ldots$	9
17	5.01380	37	9.42202	57	$\leq 13.71884\ldots$	77	$\leq 17.97295\ldots$	9
18	5.23917	38	9.63847	58	$\leq 13.93232\ldots$	78	\leq 18.18494	9
19	5.46532	39	9.85474	59	$\leq 14.14571\ldots$	79	$\leq 18.39688\ldots$	9
Daubechies Lagarias [92]: Gripenberg [96]: Guglielmi, Protasov [16]: M · M · 32/38								

Daubechies, Lagarias, 1921; Gripenberg, 1961; Guglielmi, Protasov, 1161; M.; M.;

Order	1	2	3	4
Square	0	1	2	3
Dragon	0	0.4764	1.558	2.192
Bear				
Order	1	2	3	4
--------	---	--------	-------	-------
Square	0	1	2	3
Dragon	0	0.4764	1.558	2.192
Bear	0			

Order	1	2	3	4
Square	0	1	2	3
Dragon	0	0.4764	1.558	2.192
Bear	0	0.7892		

Order	1	2	3	4
Square	0	1	2	3
Dragon	0	0.4764	1.558	2.192
Bear	0	0.7892	2.235	

Order	1	2	3	4
Square	0	1	2	3
Dragon	0	0.4764	1.558	2.192
Bear	0	0.7892	2.235	3.074

Finiteness conjecture

Theorem ([M22])

The finiteness conjecture holds for all pairs of matrices

- (a) of dimension 2 with entries $\{0, 1\}$,
- (b) of dimension 2 with entries $\{-1, 0, 1\}$, and

(c) of dimension 3 with entries $\{0, 1\}$.

- Matlab toolbox for computation of the joint spectral radius
- □ gitlab.com/tommsch/ttoolboxes
- mathematically rigorous results

```
T = {[1 1;2 1], [1 0;-1 1]};
tjsr(T);
```

Open research questions

Open questions

- Finiteness conjecture for rational matrices
- Does exist a set A, coming from applications, with a complex leading eigenvector
- Do exist products which cannot be an s.m.p..
- Algorithm for sets with multiple s.m.p.s and multiple leading eigenvalues.
- □ Algorithm for sets without spectral gap
- □ Characterizations for the spectral gap
- □ Lower spectral radius

Thank you for listening Questions welcome